KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Chemistry
    • Chemistry Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Chemistry
    • Chemistry Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Generalized dynamical thermostating technique

    Thumbnail
    View/Open
    LairdB_PRE_2003(68)016704.pdf (66.10Kb)
    Issue Date
    2003-07-29
    Author
    Laird, Brian Bostian
    Leimkuhler, Benedict J.
    Publisher
    American Physical Society
    Type
    Article
    Article Version
    Scholarly/refereed, publisher version
    Metadata
    Show full item record
    Abstract
    We demonstrate that the Nosé method for constant-temperature molecular-dynamics simulation [Mol. Phys. 52, 255 (1984)] can be substantially generalized by the addition of auxiliary variables to encompass an infinite variety of Hamiltonian thermostats. Such thermostats can be used to enhance ergodicity in systems, such as the one-dimensional harmonic oscillator or certain molecular systems, for which the standard Nosé-Hoover methods fail to reproduce converged canonical distributions. In this respect the method is similar in spirit to the method of Nosé-Hoover chains, but is both more general and Hamiltonian in structure (which allows for the use of efficient symplectic integration schemes). In particular, we show that, within the generalized Nosé formalism outlined herein, any Hamiltonian system can be thermostated with any other, including a copy of itself. This gives one an enormous flexibility in choosing the form of the thermostating bath. Numerical experiments are included in which a harmonic oscillator is thermostated with a collection of noninteracting harmonic oscillators as well as by a soft billiard system.
    Description
    This is the publisher's version, also available electronically from http://journals.aps.org/pre/abstract/10.1103/PhysRevE.68.016704.
    URI
    http://hdl.handle.net/1808/16139
    DOI
    https://doi.org/10.1103/PhysRevE.68.016704
    ISSN
    1539-3755
    Collections
    • Chemistry Scholarly Works [613]
    Citation
    Laird, Brian Bostian; Leimkuhler, Benedict J. (2003). "Generalized dynamical thermostating technique." Physical Review E, 68(1):016704. http://dx.doi.org/10.1103/PhysRevE.68.016704.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps