KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Chemistry
    • Chemistry Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Chemistry
    • Chemistry Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Many-mode Floquet theoretical approach for coherent control of multiphoton dynamics driven by intense frequency-comb laser fields

    Thumbnail
    View/Open
    ChuShih-I_6-5-2008.pdf (496.4Kb)
    Issue Date
    2008-06-05
    Author
    Son, Sang-Kil
    Chu, Shih-I
    Publisher
    American Physical Society
    Type
    Article
    Article Version
    Scholarly/refereed, publisher version
    Metadata
    Show full item record
    Abstract
    We extend the many-mode Floquet theorem (MMFT) for the investigation of multiphoton resonance dynamics driven by intense frequency-comb laser fields. The frequency comb structure generated by a train of short laser pulses can be exactly represented by a combination of the main frequency and the repetition frequency. MMFT allows non-perturbative and exact treatment of the interaction of a quantum system with the frequency-comb laser fields. We observe simultaneous multiphoton resonance processes between a two-level system and frequency-comb laser. The multiphoton processes can be coherently controlled by tuning the laser parameters such as the carrier-envelope phase (CEP) shift. In particular, high-order harmonic generation shows immense enhancement by tuning the CEP shift, due to simultaneous multiphoton resonances.
    Description
    This is the publisher's version, also available electronically from http://journals.aps.org/pra/abstract/10.1103/PhysRevA.77.063406.
    URI
    http://hdl.handle.net/1808/16064
    DOI
    https://doi.org/10.1103/PhysRevA.77.063406
    ISSN
    1050-2947
    Collections
    • Chemistry Scholarly Works [610]
    Citation
    Son, Sang-Kil; Chu, Shih-I. (2008). "Many-mode Floquet theoretical approach for coherent control of multiphoton dynamics driven by intense frequency-comb laser fields." Physical Review A, 77(06):063406. http://dx.doi.org/10.1103/PhysRevA.77.063406.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps