KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Chemistry
    • Chemistry Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Chemistry
    • Chemistry Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sample heating in near-field scanning optical microscopy

    Thumbnail
    View/Open
    DunnR_2005.pdf (294.5Kb)
    Issue Date
    2005-10-05
    Author
    Erickson, Elizabeth S.
    Dunn, Robert C.
    Publisher
    American Institute of Physics
    Type
    Article
    Article Version
    Scholarly/refereed, publisher version
    Metadata
    Show full item record
    Abstract
    Heating near the aperture of aluminumcoated,fiber opticnear-field scanning optical microscopy probes was studied as a function of input and output powers. Using the shear-force feedback method, near-field probes were positioned nanometers above a thermochromic polymer and spectra were recorded as the input power was varied. Excitation at 405 nm of a thin polymer film incorporating perylene and N-allyl-N-methylaniline leads to dual emission peaks in the spectra. The relative peak intensity is temperature sensitive leading to a ratiometric measurement, which avoids complications based solely on intensity. Using this method, we find that the proximal end of typical near-field probes modestly increase in temperature to 40–45 °C at output powers of a few nanowatts (input power of ∼0.15mW). This increases to 55–65 °C at higher output powers of 50 nW or greater (input power of ∼2–4mW). Thermal heating of the probe at higher powers leads to probe elongation, which limits the heating experienced by the sample.
    Description
    This is the published version, also available here: http://dx.doi.org/10.1063/1.2130388.
    URI
    http://hdl.handle.net/1808/16048
    DOI
    https://doi.org/10.1063/1.2130388
    Collections
    • Chemistry Scholarly Works [506]
    Citation
    Erickson, Elizabeth S. & Dunn, Robert C. "Sample heating in near-field scanning optical microscopy." Appl. Phys. Lett. 87, 201102 (2005); http://dx.doi.org/10.1063/1.2130388.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps