KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Chemistry
    • Chemistry Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Chemistry
    • Chemistry Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Semiclassical many-mode Floquet theory. IV. Coherent population trapping and SU(3) dynamical evolution of dissipative three-level systems in intense bichromatic fields

    Thumbnail
    View/Open
    ChuShih-I_7-1-1985_377.pdf (1.123Mb)
    Issue Date
    1985-07-01
    Author
    Chu, Shih-I
    Ho, Tak-San
    Publisher
    American Physical Society
    Type
    Article
    Article Version
    Scholarly/refereed, publisher version
    Metadata
    Show full item record
    Abstract
    The many-mode Floquet theory (MMFT) recently developed by authors is extended to incorporate the irreversible damping mechanisms for the nonperturbative treatment of the dynamical evolution of dissipative three-level systems at two-photon or multiphoton coherent resonance trapping conditions induced by two strong linearly polarized monochromatic fields. It has been recently shown by several workers that under the rotating-wave approximation (RWA), population may be permanently trapped in the three-level system if the coherent monochromatic fields are exactly two-photon resonant with the initial and final states, decoupled from the intermediate decaying level. In practice, the inclusion of the non-RWA terms necessarily modifies the resonant trapping conditions and behavior. In this paper we extend the generalized Van Vleck (GVV) nearly degenerate perturbation theory to an analytical treatment of the non-Hermitian two-mode Floquet Hamiltonian. This reduces the infinite-dimensional time-independent non-Hermitian Floquet Hamiltonian to a 3×3 effective Hamiltonian, from which essential properties of the coherent population-trapping behavior as well as the dynamical evolution of the dissipative SU(3) coherence vector S→(t) can be readily obtained and expressed in terms of only three complex quasienergy eigenvalues and eigenvectors. The MMFT-GVV studies show that the RWA two-photon resonant trapping condition is substantially modified by the effects of non-RWA terms, and that the system can be ‘‘quasitrapped’’ for only a finite amount of time characterized by a small imaginary energy (width) associated with a coherent superposition state of the initial and final levels. Furthermore, it is found that the initially eight-dimensional coherence vector S→(t) evolves predominantly to a one-dimensional scalar at the two-photon or multiphoton resonant quasitrapping conditions. Detailed results and pictorial representations of the population trapping and SU(3) dissipative dynamical evolution are presented.
    Description
    This is the published version, also available here: http://dx.doi.org/10.1103/PhysRevA.32.377.
    URI
    http://hdl.handle.net/1808/16014
    DOI
    https://doi.org/10.1103/PhysRevA.32.377
    Collections
    • Chemistry Scholarly Works [610]
    Citation
    Ho, Tak-San & Chu, Shih-I. "Semiclassical many-mode Floquet theory. IV. Coherent population trapping and SU(3) dynamical evolution of dissipative three-level systems in intense bichromatic fields." Phys. Rev. A 32, 377 – Published 1 July 1985. http://dx.doi.org/10.1103/PhysRevA.32.377.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps