Show simple item record

dc.contributor.authorBrunsell, Nathaniel A.
dc.contributor.authorWilson, Cassandra J.
dc.date.accessioned2014-12-01T19:28:03Z
dc.date.available2014-12-01T19:28:03Z
dc.date.issued2013-04-10
dc.identifier.citationBrunsell, N.A.; Wilson, C.J. Multiscale Interactions betweenWater and Carbon Fluxes and Environmental Variables in A Central U.S. Grassland. Entropy 2013, 15, 1324-1341. http://dx.doi.org/10.3390/e15041324.en_US
dc.identifier.urihttp://hdl.handle.net/1808/15957
dc.descriptionThis is the authors accepted manuscript. The published version can be found here: http://dx.doi.org/10.3390/e15041324.en_US
dc.description.abstractThe temporal interactions between water and carbon cycling and the controlling environmental variables are investigated using wavelets and information theory. We used 3.5 years of eddy covariance station observations from an abandoned agricultural field in the central U.S. Time-series of the entropy of water and carbon fluxes exhibit pronounced annual cycles, primarily explained by the modulation of the diurnal flux amplitude by other variables, such as the net radiation. Entropies of soil moisture and precipitation show almost no annual cycle, but the data were collected during above average precipitation years, which limits the role of moisture stress on the resultant fluxes. We also investigated the information contribution to resultant fluxes from selected environmental variables as a function of time-scale using relative entropy. The relative entropy of latent heat flux and ecosystem respiration show that the radiation terms contribute the most information to these fluxes at scales up to the diurnal scale. Vapor pressure deficit and air temperature contribute to the most information for the gross primary productivity and net ecosystem exchange at the daily time-scale. The relative entropy between the fluxes and soil moisture illustrates that soil moisture contributes information at approximately weekly time-scales, while the relative entropy with precipitation contributes information predominantly at the monthly time-scale. The use of information theory metrics is a relatively new technique for assessing biosphere-atmosphere interactions, and this study illustrates the utility of the approach for assessing the dominant time-scales of these interactions.en_US
dc.publisherMDPIen_US
dc.subjectEddy covariance
dc.subjectRelative entropy
dc.subjectEntropy
dc.subjectWavelets
dc.subjectScaling
dc.titleMultiscale Interactions between Water and Carbon Fluxes and Environmental Variables in A Central U.S. Grasslanden_US
dc.typeArticle
kusw.kuauthorBrunsell, Nathaniel A.
kusw.kuauthorWilson, Cassandra J.
kusw.kudepartmentGeographyen_US
dc.identifier.doi10.3390/e15041324
kusw.oaversionScholarly/refereed, author accepted manuscript
kusw.oapolicyThis item meets KU Open Access policy criteria.
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record