KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Geography & Atmospheric Science
    • Geography & Atmospheric Science Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Geography & Atmospheric Science
    • Geography & Atmospheric Science Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fidelity of Analytic Drop Size Distributions in Drizzling Stratiform Clouds Based on Large-Eddy Simulations

    Thumbnail
    View/Open
    MechemD_JAS_66(8)2335.pdf (2.526Mb)
    Issue Date
    2009-08-01
    Author
    Kogan, Yefim L.
    Kogan, Zena N.
    Mechem, David B.
    Publisher
    American Meteorological Society
    Type
    Article
    Article Version
    Scholarly/refereed, publisher version
    Metadata
    Show full item record
    Abstract
    Cloud microphysical parameterizations and retrievals rely heavily on knowledge of the shape of drop size distributions (DSDs). Many investigations assume that DSDs in the entire or partial drop size range may be approximated by known analytical functions. The most frequently employed approximations of function are of the type of gamma, lognormal, Khrgian–Mazin, and Marshall–Palmer. At present, little is known about the accuracy of these approximations. The authors employ a DSD dataset generated by the Cooperative Institute for Mesoscale Meteorological Studies Large-Eddy Simulation (CIMMS LES) explicit microphysics model for stratocumulus cases observed during the Atlantic Stratocumulus Transition Experiment (ASTEX) field project. The fidelity of analytic lognormal- and gamma-type DSD functions is evaluated according to how well they represent the higher-order moments of the drop spectra, such as precipitation flux and radar reflectivity. It is concluded that for boundary layer marine drizzling stratocumuli, a DSD based on the two-mode gamma distribution provides a more accurate estimate of precipitation flux and radar reflectivity than the DSD based on the lognormal distribution. The gamma distribution also provides a more accurate radar reflectivity field in two- and three-moment bulk microphysical models compared to the conventional Z–R relationship.
    Description
    This is the publisher's version, also available electronically from http://journals.ametsoc.org/doi/abs/10.1175/2009JAS3028.1.
    URI
    http://hdl.handle.net/1808/15861
    DOI
    https://doi.org/10.1175/2009JAS3028.1
    ISSN
    0022-4928
    Collections
    • Geography & Atmospheric Science Scholarly Works [199]
    Citation
    Kogan, Yefim L.; Kogan, Zena N.; Mechem, David B. (2009). "Fidelity of Analytic Drop Size Distributions in Drizzling Stratiform Clouds Based on Large-Eddy Simulations." J. Atmos. Sci., 66(8):2335-2348. http://dx.doi.org/10.1175/2009JAS3028.1.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps