KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Geography & Atmospheric Science
    • Geography & Atmospheric Science Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Geography & Atmospheric Science
    • Geography & Atmospheric Science Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical simulation of tropical cumulus congestus during TOGA COARE

    Thumbnail
    View/Open
    Mechem_et_al_NumericalSimulation.pdf (4.653Mb)
    Issue Date
    2013-09-17
    Author
    Mechem, David B.
    Publisher
    American Geophysical Union
    Type
    Article
    Article Version
    Scholarly/refereed, publisher version
    Metadata
    Show full item record
    Abstract
    Recent observational studies of tropical deep convection typically include some mention of cumulus congestus, a third mode of tropical convection, in addition to shallow trade cumulus and deep convection. This study analyzes congestus behavior in a multiday cloud-resolving model simulation based on the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) field campaign. Simulation results exhibit a pronounced congestus cloud mode, present during both suppressed and active phases of the intraseasonal oscillation (ISO), with a unique signature consistent with cloudy-air detrainment near the 0°C isotherm. Congestus clouds in the simulation contribute 34% of the total precipitation during a 10 day transition period from suppressed to active phases, a number which corresponds well with previous estimates of the congestus contribution to precipitation. Domain-mean profiles and statistics from conditionally sampled buoyant cloud cores are compared with similar quantities from a recent model intercomparison of RICO trade cumulus. In many respects, cumulus congestus act like overgrown trade cumulus clouds. Both cloud types demonstrate multiple cloud fraction maxima associated with cloud base and detrainment layers. Profiles of buoyancy flux and vertical velocity variance suggest that the buoyancy production of turbulence behaves similarly in both cloud types. The greater precipitation production in the simulated congestus clouds nearly balances the surface latent heat flux, and thus the congestus contribution to moistening the atmosphere is limited. The computational configuration is a compromise between providing both sufficient resolution to represent shallow cumulus and sufficient domain size to handle broader, deep convective clouds.
    Description
    This is the publisher's version, also available electronically from http://onlinelibrary.wiley.com/doi/10.1002/jame.20043/abstract;jsessionid=2E90F627A62185A02B4E5DB7ADA75618.f04t04
    URI
    http://hdl.handle.net/1808/14473
    DOI
    https://doi.org/10.1002/jame.20043
    Collections
    • Geography & Atmospheric Science Scholarly Works [199]
    Citation
    Mechem, David B. and A. J. Oberthaler. (2013). Numerical simulation of tropical cumulus congestus during TOGA COARE. Journal of Advances in Modeling Earth Systems 5:41654. http://www.dx.doi.org/10.1002/jame.20043

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps