KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Correlation of solid-state NMR relaxation times to functional properties such as chemical stability and particle size

    Thumbnail
    View/Open
    Dempah_ku_0099D_12698_DATA_1.pdf (11.60Mb)
    Issue Date
    2013-05-31
    Author
    Dempah, Kassibla Elodie
    Publisher
    University of Kansas
    Format
    231 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Pharmaceutical Chemistry
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    The purpose of the work presented in this dissertation was to investigate the correlation between the particle size of crystalline active pharmaceutical ingredients (APIs) and their solid-state NMR (SSNMR) proton spin-lattice relaxation times (1H T1) using model compounds. Dicumarol and salicylic acid were selected as model compounds for this study. Crystalline samples of the model compounds containing particles with sizes ranging from 1 &um- 800 &um were prepared by sieving, spray-drying, and anti-solvent precipitation. The physical state and the particle size of the materials prepared were characterized. A model that describes the correlation observed between the 1H T1 time of the dicumarol and the salicylic acid materials and their particle size was proposed. The model was based on the assumption that spin diffusion is the main spin-lattice relaxation mechanism. The way that SSNMR relaxation time measurements could be used to characterize the polydispersity of crystalline powders using physical mixtures of dicumarol was also investigated. A short investigation of the effect of different compaction forces on the homogeneity of formulated tablets of salicylic acid was also conducted. Different 1H T1 times were obtained for salicylic acid at all compaction forces, and heavier compaction forces lead to a larger decrease in 1H T1 time. Finally, the effect of grinding on the chemical stability of a crystalline API gabapentin was investigated. Changes in 1H T1 times of ground crystalline gabapentin Form II were correlated with the chemical stability of the material: samples with shorter 1H T1 times were the least chemical stable. The physical meaning for the reduction in 1H T1 time observed was believed to be both the presence of crystal defects and the decrease in particle size of the material. This research provided evidence that SSNMR can be used to characterize bulk properties as well as molecular level characteristics of pharmaceutical solids. This could improve the characterization of formulated drug products during drug development.
    URI
    http://hdl.handle.net/1808/11468
    Collections
    • Dissertations [4474]
    • Pharmaceutical Chemistry Dissertations and Theses [141]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps