KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adaptive Flutter Test Vane: Low Net Passive Stiffness (LNPS) Techniques for Deflection Amplification of Piezoelectric Actuators

    Thumbnail
    View/Open
    Barnhart_ku_0099M_12415_DATA_1.pdf (9.583Mb)
    Issue Date
    2012-12-31
    Author
    Barnhart, Ryan
    Publisher
    University of Kansas
    Format
    168 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Aerospace Engineering
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    This document outlines the design, development and testing of an adaptive flutter test surface utilizing low net passive stiffness (LNPS) actuator configurations for deflection amplification. The device uses a tapered piezoelectric bender actuator in an aerodynamic shell which pivots about the quarter-chord. Laminated plate theory is used to capture the unamplified deflection levels. A unique reverse-bias spring mechanism enables LNPS techniques, generating a 5:1 amplification ratio from baseline deflection levels with negligible weight penalty and no degradation in blocked moments. The adaptive flutter test vane and associated spar-mounting hardware have a combined weight of only 2 lb and consume less than 1W of peak power at maximum actuation voltage. The significance of the relatively low installed weight is apparent when considering the effect on the modal mass of the aircraft. It can be shown that a reduction in weight from the current state-of-the-art 18+ lb (installed) DEI vane to a 2 lb adaptive flutter test vane (installed) improves the normalized first natural frequency of flap in a wing from approximately 60% to 90% in light aircraft classes - all but eliminating the detrimental effect of additional mass on the accuracy of flutter prediction. Quasi-static and dynamic wind tunnel testing shows excellent correlation with bench tests and theory. Maximum deflection levels were recorded in excess of 8 deg. peak-to-peak, with a corner frequency in excess of 50 Hz. Wind tunnel tests were performed up to 110 ft/s with change in lift forces on the order of 1.45 lbf. This paper focuses on the testing and evaluation of the aforementioned hardware for applications in certification of small aircraft in the general aviation (GA), light sport (LSA), homebuilt and ultralight classes.
    URI
    http://hdl.handle.net/1808/10625
    Collections
    • Engineering Dissertations and Theses [705]
    • Theses [3743]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps