KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamic Incompressible Navier-Stokes Model of Catalytic Converter in 1-D Including Fundamental Oxidation Reaction Rate Expressions

    Thumbnail
    View/Open
    Loya_ku_0099M_11801_DATA_1.pdf (2.678Mb)
    Issue Date
    2011-12-31
    Author
    Loya, Sudarshan K.
    Publisher
    University of Kansas
    Format
    253 pages
    Type
    Thesis
    Degree Level
    M.F.A.
    Discipline
    Mechanical Engineering
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Classical one-dimensional (1D) models of automotive catalysts are effective in designing catalyst systems that meet current emission standards. These models use various assumptions in order to simplify the mathematical formulation. Although these postulations have been effective in the past, they might not work with new versions of catalytic converters and the architectures being proposed. In particular, classical models neglect viscosity, conductivity and diffusion in the bulk gas phase. However, in low flow rate regenerative catalysts, these terms might become important. In order to account for these phenomena, an updated model is proposed for the dynamically incompressible flow in the converter. At the same time, derivation and utilization of these terms is studied for proper inclusion in the model. Furthermore, it is evident from the history of catalyst modeling that precise reaction rate expressions are needed for accurate predictions. In order to determine the correct reaction rate expression, this work includes the history of the fundamental reactions of automotive catalysts including carbon monoxide (CO), hydrogen (H2) and nitric oxide (NO) oxidation on a widely used material formulation (platinum catalyst on alumina washcoat). A detailed report of these reactions is incorporated for the reader in order to understand the reaction mechanism along with the creation of a reaction rate expression. Using this review, the CO oxidation reaction is modeled in order to validate the changes proposed in the updated flow model. Moreover, the importance of using the model for determining the characteristics of the catalyst in low flow conditions is presented. This work ends by describing the success and failures of the revised model as compared to the classical model.
    URI
    http://hdl.handle.net/1808/9779
    Collections
    • Engineering Dissertations and Theses [1055]
    • Theses [3828]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps