KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Osteogenic and Chondrogenic Differentiation of rBMSCs on Microsphere-Based Scaffolds Sintered Using Subcritical CO2

    Thumbnail
    View/Open
    Bhamidipati_ku_0099M_11852_DATA_1.pdf (9.709Mb)
    Issue Date
    2011-12-31
    Author
    Bhamidipati, Manjari
    Publisher
    University of Kansas
    Format
    109 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Bioengineering
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Large bone defects remain a major clinical orthopedic challenge. It has been predicted that osteoarthritis will affect over 100 million adults in the United States by the year 2030. Current treatments for repairing bone defects include the use of bone grafts (autologous and allogenic) or implants (polymeric or metallic). These approaches have significant limitations due to insufficient supply, potential disease transmission, rejection, cost and the inability to integrate with the surrounding host tissue. The engineering of bone and cartilage tissue offers new therapeutic strategies to treat bone defects. Several scaffold-based approaches have been used in the past. However, this thesis presents a novel microsphere-based scaffold approach, sintered using subcritical carbon dioxide for osteogenic and chondrogenic tissue regeneration. As a next step in the fabrication of three-dimensional tissue engineered scaffolds, this thesis primarily focused on subcritical carbon dioxide sintering for forming scaffolds, performance of these scaffolds in culture for 6 weeks, and evaluation of two different polymers in osteogenic and chondrogenic differentiation. In this investigation, both temperature and pressure (along with time) were necessary to control during the CO2 sintering of PCL (higher temperature and pressure conditions with longer exposure time), as opposed to PLGA, which was sintered at ambient temperature and pressure conditions (for 1 hour exposure). The results obtained showed the feasibility of using these constructs for bone and cartilage tissue regeneration. Biochemical analysis, gene expression and histological staining were used to analyze the data. The mechanical integrity of the constructs was evaluated at the beginning and end of the culture period. The onset of PLGA degradation for the CO2 sintered microspheres in this study appeared at 1.5 weeks which affected chondrogenesis. With osteogenesis, the Osteogenic PLGA group showed greater calcium content value over the Osteogenic PCL group while PCL retained its shape, size and mechanical integrity and had twice as many cells per construct at 6 weeks. In conclusion, this thesis lays a foundation to explore numerous applications using subcritical carbon dioxide sintering for tissue engineering applications.
    URI
    http://hdl.handle.net/1808/9738
    Collections
    • Engineering Dissertations and Theses [1055]
    • Theses [3828]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps