KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ONE-DIMENSIONAL PSEUDO-HOMOGENEOUS PACKED BED REACTOR MODELING INCLUDING NO-CO KINETICS

    Thumbnail
    View/Open
    Srinivasan_ku_0099M_11679_DATA_1.pdf (2.242Mb)
    Issue Date
    2011-08-31
    Author
    Srinivasan, Anand
    Publisher
    University of Kansas
    Format
    206 pages
    Type
    Thesis
    Degree Level
    M.F.A.
    Discipline
    Mechanical Engineering
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    The air pollution generated from mobile sources creates a large impact on the environment and on people's health. In order to meet the stringent emission regulations worldwide, aftertreatment devices are employed to reduce the toxic emissions emanating from the Internal Combustion engines in these mobile sources. In order to continually reduce emissions levels, it is essential to understand and develop more predictive aftertreatment models. Traditional devices are of the monolithic geometry consisting of small channels employing laminar flow. However, often the reaction rate expressions utilized in these models are derived from more conventional packed bed reactor experimental setups. The aim of this thesis is to develop a one-dimensional pseudo-homogeneous packed bed reactor model for this type of reactor setup built in collaboration with the Chemical and Petroleum Engineering Department at the University of Kansas. A brief summary of the pseudo-homogeneous model is presented in order to properly develop the chemical species and energy equations for dynamically incompressible flow in one-dimension. Furthermore, the chemical kinetics on the reduction reaction of nitric oxide by carbon monoxide over rhodium-alumina and platinum-alumina catalysts is investigated in detail. This is accomplished in order to validate the model using fundamentally correct reaction kinetics via a precise global reaction mechanism. Finally, parametric studies including the different model components are presented and the specific choice of model does not largely influence the conversion profiles because of the similar effective transport values. Also, it is found that a careful consideration of source terms are required to model reactions accurately.
    URI
    http://hdl.handle.net/1808/8185
    Collections
    • Engineering Dissertations and Theses [1055]
    • Theses [3787]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps