KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Local Dosing in a 3-Mercaptopropionic Acid Chemically-Induced Epileptic Seizure Model with Microdialysis Sampling

    Thumbnail
    View/Open
    Mayer_ku_0099D_11264_DATA_1.pdf (7.937Mb)
    Issue Date
    2010-12-31
    Author
    Mayer, Andrew Philip
    Publisher
    University of Kansas
    Format
    216 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Chemistry
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    The focus of this research was the development of an animal model for local administration of 3-mercaptopropionic acid (3-MPA) in a chemically-induced epileptic seizure model using microdialysis sampling with simultaneous electrocorticography recording (ECoG). Local administration of 3-MPA through the microdialysis probe was employed to elicit seizures in a localized brain region. Delivery of 3-MPA to the brain and changes in amino acid and catecholamine neurotransmitters were monitored. Simultaneous ECoG recordings were made using a microdialysis probe with an internal Ag/AgCl electrode. Local administration of a convulsant is important, as many clinical cases present with focal seizures. Neurochemical and electrical activity were monitored in three separate brain regions: the striatum, hippocampus, and locus coeruleus. 3-MPA was administered through the microdialysis probe in one region, while control samples were collected in the other two. These results demonstrated that unless two brain regions were connected via efferent or afferent pathways, administration of 3-MPA in one region had no neurochemical effect in the others. In the region where 3-MPA was administered, an increase in both glutamate, the main excitatory amino acid, and GABA, the main inhibitory amino acid, was seen. In addition, an increase in both dopamine and norepinephrine was seen. A multiple dosing regimen of 3-MPA was developed where 3-MPA was administered twice. These results showed that there was an attenuation in the increase of glutamate and GABA during the second administration of 3-MPA, indicating a neuronal protective mechanism taking place to decrease the effect of the second 3-MPA administration. Seizures were not detected using during local administration of 3-MPA using the microdialysis probes with an internal Ag/AgCl electrode. This was not due to the ineffectiveness of the electrodes, as they detected seizures during systemic dosing of 3-MPA. It is possible that the number of neurons excited from the local administration of 3-MPA were so limited that the signal was too small to be detected.
    URI
    http://hdl.handle.net/1808/8161
    Collections
    • Dissertations [4321]
    • Chemistry Dissertations and Theses [336]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps