KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    In-Situ Control of BaZrO<sub>3</sub> and BaSnO<sub>3</sub> Nanorod Alignment and Microstructure in YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> Thin Films by Strain Modulated Growth

    Thumbnail
    View/Open
    Baca_ku_0099D_10627_DATA_1.pdf (7.238Mb)
    Issue Date
    2009-11-20
    Author
    Baca, Francisco Javier A.
    Publisher
    University of Kansas
    Format
    131 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Physics & Astronomy
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    With the ability to carry very high electrical currents per unit area in kilometer length wires, high temperature superconductors (HTS) are especially promising candidates for applications where size and weight constraints are priorities. From military aircraft and naval applications to energy production by wind power, many types of power generation applications may operate under strenuous conditions, requiring current densities on the order of 105 A/cm2 while subjected to magnetic fields of 3 - 5 T. In the absence of a magnetic field, this current density requirement is well within the intrinsic limits of YBa2Cu3O7-x (YBCO), but operation in high magnetic fields makes the problem of vortex motion a limiting factor to the critical current density, Jc. Vortex pinning by the insertion of non-superconducting oxides like BaZrO3 (BZO) or BaSnO3 (BSO) into the YBCO matrix is an effective means of addressing this problem since these defects self-assemble into columnar structures (nanorods) that provide strong pinning along the length of the flux-line. However, only limited control of nanorod geometry is possible by current growth methods. To meet the requirements of applications that operate in magnetic fields of varying intensity or orientation, this thesis aims to produce a defect landscape that may be designed to meet these demands, as the thin film is grown. Achieving this represents a major challenge in the development of HTS cables and power devices, requiring correlation of material synthesis and characterization on a nanometer scale. The microstructure of BZO- and BSO-doped YBCO thin films was studied using Transmission Electron Microscopy and the findings indicate that it is possible to produce a controllable defect landscape by manipulation of the strain relationships using vicinal substrates, as well as through controlled growth dynamics by varying growth temperature.
    URI
    http://hdl.handle.net/1808/7393
    Collections
    • Dissertations [4473]
    • Physics & Astronomy Dissertations and Theses [121]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps