KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Understanding Optimization Phase Interactions to Reduce the Phase Order Search Space

    Thumbnail
    View/Open
    Jantz_ku_0099M_11095_DATA_1.pdf (771.0Kb)
    Defense Presentation (1.775Mb)
    Issue Date
    2010-07-30
    Author
    Jantz, Michael
    Publisher
    University of Kansas
    Format
    72 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Compiler optimization phase ordering is a longstanding problem, and is of particular relevance to the performance-oriented and cost-constrained domain of embedded systems applications. Optimization phases are known to interact with each other, enabling and disabling opportunities for successive phases. Therefore, varying the order of applying these phases often generates distinct output codes, with different speed, code-size and power consumption characteristics. Most cur- rent approaches to address this issue focus on developing innovative methods to selectively evaluate the vast phase order search space to produce a good (but, potentially suboptimal) representation for each program. In contrast, the goal of this thesis is to study and reduce the phase order search space by: (1) identifying common causes of optimization phase interactions across all phases, and then devising techniques to eliminate them, and (2) exploiting natural phase independence to prune the phase order search space. We observe that several phase interactions are caused by false register dependence during many optimization phases. We explore the potential of cleanup phases, such as register remapping and copy propagation, at reducing false dependences. We show that innovative implementation and application of these phases not only reduces the size of the phase order search space substantially, but can also improve the quality of code generated by optimizing compilers. We examine the effect of removing cleanup phases, such as dead assignment elimination, which should not interact with other compiler phases, from the phase order search space. Finally, we show that reorganization of the phase order search into a multi-staged approach employing sets of mutually independent optimizations can reduce the search space to a fraction of its original size without sacrificing performance.
    URI
    http://hdl.handle.net/1808/6963
    Collections
    • Engineering Dissertations and Theses [1055]
    • Theses [3908]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps