KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Biodegradable Colloidal Gels as Malleable Tissue Scaffolds and Injectable Drug Carriers

    Thumbnail
    View/Open
    Wang_ku_0099D_11168_DATA_1.pdf (13.88Mb)
    Issue Date
    2010-10-07
    Author
    Wang, Qun
    Publisher
    University of Kansas
    Format
    150 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Chemical & Petroleum Engineering
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Repair of skeletal defects resulting from traumatic insult, tumor ablation, or congenital deformities remains a formidable challenge for clinicians. From a clinical perspective, the use of injectable materials is an attractive alternative to surgery as it reduces the risk of infection, scar formation, patient discomfort and the cost of treatment. Particularly, injectable scaffolds injected or extruded at low viscosity may be ideal scaffolds for bone repair or for delivery of drugs or cells to injured tissue. Such an approach is minimally invasive and is capable of filling complex 3D defects of irregular size and shape, but achieving a desirable injectable material for these defects is challenging. Nanotechnology, systems at sizes generally ranging between 1 and 1000 nm, is expected to have an important impact on all industries including semiconductors, manufacturing, pharmaceutics, and biotechnology. Colloidals are a nanostructured system in which the dispersed phase is so small that gravitational force is negligible and interactions are dominated by short-range and temporary forces, such as van der Waals force, electrostatic force, and/or steric force. The unique properties of high concentration, cohesive colloidal gels investigated here make it a potential candidate for injectable filler to repair bone, such as cranial defects. The objective of this thesis is to use oppositely-charged poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles to create a novel cohesive colloidal gel. The relationship between composition of the gels and bulk properties has been explored. Oppositely-charged colloids self-assembled through interparticle interactions resulting in a stable 3-D network that was easily molded to the desired shape. Rheological tests on colloidal gels showed shear-thinning behavior and reversibility, in that viscosity was recovered. Cell seeding and viability tests with human umbilical cord mesenchymal stem cells (HUCMSCs) indicated excellent biocompatibility with these cells. Drug release from dexamethasone (DEX) loaded colloidal gels followed near-zero order kinetics over two months. These materials were also implanted in rats and histological and histochemical analyses confirmed that the PLGA colloidal gels stimulated bone formation in rat cranial bone defects. This thesis reports PLGA colloidal gels as novel injectable drug-loaded fillers desirable for promoting reconstruction and regeneration of cranial defects. Similar systems can also be utilized with extended applications in other areas, including repairing different tissue defects and providing long-term, local drug delivery.
    URI
    http://hdl.handle.net/1808/6942
    Collections
    • Dissertations [4475]
    • Engineering Dissertations and Theses [1055]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps