KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Engineering Management
    • Engineering Management Field Projects
    • View Item
    •   KU ScholarWorks
    • Engineering Management
    • Engineering Management Field Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Auto Defect Classification (ADC) Value for Patterned Wafer Inspection Systems in PLY Within a High Volume Wafer Manufacturing Fabrication Facility

    Thumbnail
    View/Open
    Durniak, John EMGT Field Project.pdf (476.1Kb)
    Issue Date
    2010-05-14
    Author
    Durniak, John
    Type
    Project
    Metadata
    Show full item record
    Abstract
    The purpose of this investigation is to demonstrate value for Auto Defect Classification (ADC) for patterned wafer inspection systems within a high volume manufacturing fabrication in the Process Limited Yield (PLY) defect area. Process excursions in all functional Unit Process (UP) areas, examples are of etch, litho, diffusion, are monitored by PLY. Troubleshooting of process excursions using added defect density count with a small percentage (random or largest 50 examples) of and inline Scanning Electron Microscope (SEM) data classification review does not give a clear indication of the full wafer data. Statistical Process Control (SPC) trigging on total counts or defect density is not as powerful as making excursion decisions on classified data from ADC (Fisher, 2002). The ADC data gives classification of the entire wafer rather than a smaller sample making signature analysis to be an additional troubleshooting tool. The inline ADC data does not have near the resolution of the SEM but can be used to help make important decisions to what is occurring in the manufacturing line. The interest is to gain a full understanding of the current capabilities and limitation of ADC and to apply the learning to enable faster reaction and visibility into process and tool excursions within a high volume manufacturing fabrication. The Technical Learning Vehicle (TLV), high running product layer at the leading design rule, there were approximately 10,000 wafers a week with 1000 wafer die (chips) per wafer. A sustained improvement in yield of 1% across the entire manufacturing line would equate to almost 1 million dollars a month of saving. With the ability to tightly control multiple etch process tools, the resulting yield improvement was 3% across 15% of the line. With the baseline yield improvement along with ability to react quickly to process excursions, the combined improvement resulted in excessive of 5 million dollar a year of reoccurring savings.
    URI
    http://hdl.handle.net/1808/6606
    Collections
    • Engineering Management Field Projects [238]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps