KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Mathematics
    • Mathematics Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Mathematics
    • Mathematics Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Rigidity theory for matroids

    Thumbnail
    View/Open
    rigidity.pdf (697.4Kb)
    Issue Date
    2007
    Author
    Develin, Mike
    Martin, Jeremy L.
    Reiner, Victor
    Publisher
    European Mathematical Society
    Type
    Article
    Article Version
    Scholarly/refereed, author accepted manuscript
    Version
    http://arxiv.org/abs/math.CO/0503050
    Metadata
    Show full item record
    Abstract
    Combinatorial rigidity theory seeks to describe the rigidity or flexibility of bar-joint frameworks in Rd in terms of the structure of the underlying graph G. The goal of this article is to broaden the foundations of combinatorial rigidity theory by replacing G with an arbitrary representable matroid M. The ideas of rigidity independence and parallel independence, as well as Laman's and Recski's combinatorial characterizations of 2-dimensional rigidity for graphs, can naturally be extended to this wider setting. As we explain, many of these fundamental concepts really depend only on the matroid associated with G (or its Tutte polynomial), and have little to do with the special nature of graphic matroids or the field R.

    Our main result is a “nesting theorem” relating the various kinds of independence. Immediate corollaries include generalizations of Laman's Theorem, as well as the equality of 2-rigidity and 2-parallel independence. A key tool in our study is the space of photos of M, a natural algebraic variety whose irreducibility is closely related to the notions of rigidity independence and parallel independence.

    The number of points on this variety, when working over a finite field, turns out to be an interesting Tutte polynomial evaluation.
    Description
    This is the author's accepted manuscript.
    URI
    http://hdl.handle.net/1808/6358
    DOI
    https://doi.org/10.4171/CMH/89
    Collections
    • Mathematics Scholarly Works [282]
    Citation
    Rigidity theory for matroids (with Mike Develin and Victor Reiner), Commentarii Mathematici Helvetici 82 (2007), 197--233.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps