KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improving Face Recognition Performance Using a Hierarchical Bayesian Model

    Thumbnail
    View/Open
    ShikaripurNadig_ku_0099M_10881_DATA_1.pdf (1.947Mb)
    Issue Date
    2010-04-27
    Author
    Shikaripur Nadig, Ashwini
    Publisher
    University of Kansas
    Format
    47 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Over the past two decades, face recognition research has shot to the forefront due to its increased demand in security and commercial applications. Many facial feature extraction techniques for the purpose of recognition have been developed, some of which have also been successfully installed and used. Principal Component Analysis (PCA), also popularly called as Eigenfaces has been used successfully and also is a de facto standard. Linear generative models such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA) find a set of basis images and represent the faces as a linear combination of these basis functions. These models make certain assumptions about the data which limit the type of structure they can capture. This thesis is mainly based on the hierarchical Bayesian model developed by Yan Karklin of Carnegie Mellon University. His research was mainly focused on natural signals like natural images and speech signals in which he showed that for such signals, latent variables exhibit residual dependencies and non-stationary statistics. He built his model atop ICA and this hierarchical model could capture more abstract and invariant properties of the data. We apply the same hierarchical model on facial images to extract features which can result in an improved recognition performance over already existing baseline approaches. We use Kernelized Fisher Discriminant Analysis (KFLD) as our baseline as it is superior to PCA in a way that it produces well separated classes even under variations in facial expression and lighting. We conducted extensive experiments on the GreyFERET database and tested the performance on test sets with varying facial expressions. The results demonstrate the increase in performance that was expected.
    URI
    http://hdl.handle.net/1808/6297
    Collections
    • Engineering Dissertations and Theses [1055]
    • Theses [3827]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps