Show simple item record

dc.contributor.advisorKeshmiri, Shahriar
dc.contributor.authorRoyer, David Andrew
dc.date.accessioned2010-06-09T03:38:24Z
dc.date.available2010-06-09T03:38:24Z
dc.date.issued2010-04-22
dc.date.submitted2010
dc.identifier.otherhttp://dissertations.umi.com/ku:10895
dc.identifier.urihttp://hdl.handle.net/1808/6290
dc.description.abstractThis document describes the design of an automatic landing system for the Meridian unmanned aerial vehicle (UAV) in development for glacial ice research. The Center for Remote Sensing of Ice Sheets (CReSIS), established by the National Science Foundation (NSF), will use the Meridian UAV to carry an ice penetrating radar system with eight flat plate antennas attached underneath the wings of the aircraft. The autolanding system designed in this thesis is meant to increase the autonomy of the Meridian to eventually reach a fully autonomous system. A literature review of current research in automatic landing systems is presented. The Meridian UAV is modeled using Advanced Aircraft Analysis and Athena Vortex Lattice software; longitudinal and lateral state space models are developed and analyzed to evaluate the dynamic modes of the aircraft. A sensitivity analysis is performed evaluating the effect of changing Clβ, Cnβ, and CYβ on the aircraft dynamics to investigate the effects of eight flat plate antennas attached below the wings. Fuzzy logic is determined the ideal application for an automatic landing controller based on its ability to control uncertain and nonlinear systems. Using fuzzy logic, a longitudinal automatic landing controller is designed which uses high level commands through the wePilot2000 for aircraft control. Simulation shows the controller is promising for further research and eventual implementation with the wePilot2000 flight control system.
dc.format.extent95 pages
dc.language.isoEN
dc.publisherUniversity of Kansas
dc.rightsThis item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
dc.subjectAerospace engineering
dc.subjectAutoland
dc.subjectFuzzy logic
dc.subjectSensitivity analysis
dc.subjectUav
dc.subjectWepilot
dc.titleDesign of an Automatic Landing System for the Meridian UAV using Fuzzy Logic
dc.typeThesis
dc.contributor.cmtememberDowning, David
dc.contributor.cmtememberHale, Richard
dc.contributor.cmtememberEwing, Mark
dc.thesis.degreeDisciplineAerospace Engineering
dc.thesis.degreeLevelM.S.
kusw.oastatusna
kusw.oapolicyThis item does not meet KU Open Access policy criteria.
kusw.bibid7078813
dc.rights.accessrightsopenAccess


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record