KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fatigue Enhancement of Undersized, Drilled Crack-Stop Holes

    Thumbnail
    View/Open
    Crain_ku_0099M_10794_DATA_1.pdf (18.21Mb)
    Issue Date
    2010-04-20
    Author
    Crain, Joshua Sakumura
    Publisher
    University of Kansas
    Format
    164 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Civil, Environmental, & Architectural Engineering
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    A common technique used to prevent the propagation of cracks in bridge girders is drilling crack-stop holes at the crack tips. By doing so, stress concentrations at the tip of the cracks are reduced and fatigue life of the bridge is extended. The size of the crack-stop hole is determined by utilizing known material properties and relationships developed through experimentation. However, these equations often result in a crack-stop hole diameter larger than can be practically drilled; therefore, physical limitations force crack-stop holes to be undersized in the field. To raise the effectiveness of the undersized holes to that of full-sized holes, a method is needed to strengthen undersized crack-stop holes. A similar problem was reported in the aerospace industry with fastener holes, which are potential sites for cracks to initiate and propagate. Static mechanical coldworking generated a great deal of interest in the 1970s and was among several processes that were investigated for improving fatigue life of fastener holes. Extensive literature exists showing that static coldworking of fastener holes can increase fatigue-life-to-failure by a factor from three to ten, depending on stress range. The purpose of this study is to develop a technique to improve the fatigue lives of undersized, crack-stop holes. The technique under development uses piezoelectric transducers operated at ultrasonic frequencies to improve upon recognized coldworking techniques. The piezoelectric transducers duplicate the residual compressive stresses produced by static cold expansion and hopefully change grain size. These residual compressive stresses act as a barrier to crack initiation by reducing the stress concentration at the hole. In addition, this new technique is expected to change the crystalline structure of the steel in the immediate vicinity surrounding the under-sized hole. It is thought that the excitation from the piezoelectric transducers will refine the grain size and create a more uniform grain size thereby improving fatigue performance. A tool is being developed that utilizes the piezoelectric transducers ability to convert electrical signals into mechanical work. Initially, the tool being developed is a small-scale laboratory device; once the technique is proven, it will be scaled up for use on full-scale bridge members under laboratory conditions. Lastly, a tool using the same technology will be developed for field application. The research includes a set of finite element models created to aid in tool design and to quantify and characterize the residual stresses surrounding the cold expanded crack-stop holes. Results were compared and agreed quite favorably to analyses found in past literature.
    URI
    http://hdl.handle.net/1808/6288
    Collections
    • Engineering Dissertations and Theses [1055]
    • Theses [3828]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps