Mixed Ionic/Electronic Conducting Ceramic Membranes for Oxygen-Assisted CO2 Reforming
Issue Date
2010-03-29Author
Slade, David A.
Publisher
University of Kansas
Format
332 pages
Type
Dissertation
Degree Level
Ph.D.
Discipline
Chemical & Petroleum Engineering
Rights
This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
Metadata
Show full item recordAbstract
Incorporating a SrFeCo0.5Ox (SFC) membrane into a CO2 reforming reactor doubles methane conversion with a powder Pt/ZrO2 catalyst. The deactivation of both Pt/ZrO2 and a Pt/CeZrO2 catalyst is also retarded substantially. Catalyst performance improvement is attributed to a beneficial in situ effect of the SFC membrane on catalyst oxidation state. The SFC membranes exhibit low oxygen flux (< 0.01 sccm/cm^2) and insignificant methane conversion activity. The molecular-level effects of SFC membranes, co-fed gas-phase oxygen, and conventional powder catalyst oxidation state are all assessed using reactor effluent composition trends. A novel single parameter (the Oxidation Factor) is proposed for evaluating product selectivity for CO2 reforming in the presence of oxygen. Membrane oxygen release is attributed entirely to hydrogen oxidation on the membrane surface under these reforming reaction conditions. This claim contradicts a long-standing assumption in the literature that membrane oxygen participates in reforming reactions as molecular oxygen.
Collections
- Dissertations [4454]
- Engineering Dissertations and Theses [1055]
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.