KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Linearization using Digital Predistortion of a High-Speed, Pulsed, Radio Frequency Power Amplifier for VHF Radar Depth-Sounder Systems

    Thumbnail
    View/Open
    Player_ku_0099M_10787_DATA_1.pdf (14.91Mb)
    Issue Date
    2010-03-29
    Author
    Player, Kevin
    Publisher
    University of Kansas
    Format
    137 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Depth-sounding radar systems provide the scientific data that are useful in modeling polar ice sheets and predicting sea-level rise. These radars are typically deployed on crewed aircraft; however, crewed missions over polar regions are difficult and dangerous. Thus, CReSIS is developing uninhabited aerial vehicles (UAVs) from which fine-resolution measurements can be made over vast areas. These fine-resolution measurements require highly linear power amplifiers (PAs) to create low range side-lobe levels. However, highly linear PAs are typically less efficient and require large and bulky heat sinks for heat dissipation, which increases the payload weight and decreases flight time. Furthermore, the linear FM chirp signal used for these radar systems creates Fresnel ripples and side-lobes will be generated when there are deviations from the ideal rectangular spectrum amplitude even with efficient windowing techniques, such as a Tukey window. Therefore, a 100 W, high-speed, pulsed, VHF power amplifier was developed and linearized using memoryless digital predistortion (DP) to obtain high linearity and high efficiency. The DP linearization decreased near-range side-lobe levels 11 dB from -46 dBc to -57 dBc, with a maximum reduction in the far-range side-lobe levels of 17 dB over the Tukey (transmit) and Blackmann2 (receive) windowing alone. The high-speed switching circuit reduced current consumption to 117 mA (or 3.28 W at +28 V) for a 10-us pulse at 1-kHz PRF.
    URI
    http://hdl.handle.net/1808/6282
    Collections
    • Engineering Dissertations and Theses [1055]
    • Theses [3772]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps