KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Single Molecule Probes of Lipid Membrane Structure

    Thumbnail
    View/Open
    Livanec_ku_0099D_10651_DATA_1.pdf (6.726Mb)
    Issue Date
    2009-12-14
    Author
    Livanec, Philip W.
    Publisher
    University of Kansas
    Format
    206 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Chemistry
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Biological membranes are highly heterogeneous structures that are thought to use this heterogeneity to organize and modify the function of membrane constituents. Probing membrane organization, structure, and changes therein are crucial for linking structural metrics with function in biological membranes. Single-molecule fluorescence studies were used to measure membrane structure at the molecular level. Several groups have shown that polarized total internal reflection fluorescence microscopy (PTIRF-M) using p-polarized excitation can reveal single-molecule orientations when spherical aberrations are introduced into the optics train. This approach was used here to measure the orientation of fluorescent lipid analogs doped into Langmuir-Blodgett and bilayer films of DPPC and DPPC/sterol mixed monolayers. Two commonly used fluorescent lipid analogs, BODIPY-PC and DiIC18 which have their fluorophores located in the tailgroup and headgroup, respectively were used and a variety of other probes are currently being studied. It was found that the tilt orientation of BODIPY-PC is very sensitive to the surface pressure at which the DPPC films are transferred onto the substrate. At low surface pressures, the tailgroups are largely lying in the plane of the film and evolve to an orientation normal to the surface as pressure is increased. For DiIC18, however, no evolution in orientation with surface pressure is observed which is consistent with the headgroup located fluorophore being less sensitive to changes in membrane packing. The monolayer / bilayer "equivalent surface pressure" was also found to be ~23 mN/m by directly comparing the molecular structure in the two films. Using this information, the condensing affect of cholesterol and other biologically relevant sterols on monolayers and bilayers at the equivalent surface pressure was studied. Molecular dynamics simulations were also compared with the experimental results to probe the insertion of BODIPY-PC into membrane lipids.
    URI
    http://hdl.handle.net/1808/5991
    Collections
    • Dissertations [3958]
    • Chemistry Dissertations and Theses [171]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps