KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Combined Near-field Scanning Microwave Microscope and Transport Measurement System for Characterizing Dissipation in Conducting and High-Tc Superconducting Films at Variable Temperature

    Thumbnail
    View/Open
    Dizon_ku_0099D_10371_DATA_1.pdf (29.44Mb)
    Issue Date
    2009-04-28
    Author
    Dizon, Jonathan Reyes
    Publisher
    University of Kansas
    Format
    127 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Physics & Astronomy
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Identifying defects and non-superconducting regions in high-temperature superconductors (HTS) is of great importance because they limit the material's capability to carry higher current densities and serve as nucleation spots for "hot spots" that can evolve over time and drive a HTS from superconducting (SC) to normal state. A technique that combines near-field scanning microwave microscopy (NSMM) with transport measurement was developed to image defects and nonuniformities at room temperature and detect low-level dissipation at low temperatures. At room temperature, macroscopic and microscopic defects in both conducting and HTS films were clearly identified and imaged with adequate sensitivity and resolution. At low temperatures, low-level dissipation was detected by observing the NSMM's response during the HTS' transition from SC to normal state. Measuring the time-dependent self-heating effect due to a bias current at a fixed temperature provided insight into the dynamics of thermal instability due to hot-spot nucleation. When the HTS is far from the transition state, a bi-modal evolution of the thermal quench was observed beginning with a nucleation of a local hot spot followed by a spreading/coalescence of them via self-heating. When the HTS is brought closer to transition by increasing either temperature or bias current, this effect is diminished due to faster hot spot growth and continuous spread by self-heating. Observations were obtained for both the bulk and grain boundary regions of a HTS.
    URI
    http://hdl.handle.net/1808/5460
    Collections
    • Dissertations [4474]
    • Physics & Astronomy Dissertations and Theses [121]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps