KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Determination of Glacial-Ice Temperature Profiles Using Radar and an Antenna-Gain Estimation Technique

    Thumbnail
    View/Open
    Hughes_ku_0099M_10092_DATA_1.pdf (2.563Mb)
    Issue Date
    2008-01-01
    Author
    Hughes, Michael Ryan
    Publisher
    University of Kansas
    Format
    157 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Knowledge of glacial ice temperature profiles is important to the study of glaciology. Currently, the only method of obtaining ice temperature profiles is by drilling ice cores, which is a long and arduous process. Fortunately, ice-penetrating radar can be used to obtain temperature profiles without the need of ice cores. A radar technique incorporating common mid-point geometries is presented for measuring ice temperature. However, in order for this technique to work, accurate estimates of the far-zone antenna gain within glacial ice are necessary. Currently, commercial electromagnetics software packages utilizing the finite element method (FEM) are used by academia and industry to accurately characterize antennas in free space, and near finite dielectric and conductive materials. Unfortunately, these commercial packages are incapable of accurately determining the far-zone antenna gain near a dielectric half-space such as glacial ice. Therefore, to solve this problem, a routine for determining the far-zone gain of an antenna located near glacial ice was developed, which utilizes an FEM package in conjunction with a near-to-far-field transformation (NFFT). Additionally, glacial ice imposes another complication to estimating far-zone antenna gain: the dielectric constant is a function of depth. Therefore the far-zone antenna gain within glacial ice changes as a function of depth due to increased ray bending resulting from refraction. To solve this problem, the geometric optics technique (GO) was used to propagate the far-zone antenna gain determined within the relatively shallow upper region of glacial ice, dubbed the quasi-far-zone, to any depth within glacial ice. Results are presented showing that this technique is capable of accurately determining the far-zone gain at any depth within glacial ice for an arbitrary antenna located near glacial ice. Additionally, results are presented showing that with the aid of this numerical antenna gain estimation software, ice-penetrating radar can be used to determine glacial ice temperature profiles at all depths.
    URI
    http://hdl.handle.net/1808/4360
    Collections
    • Engineering Dissertations and Theses [1055]
    • Theses [3828]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps