Isatin Derivatives as Inhibitors of Microtubule Assembly

View/ Open
Issue Date
2008-09-04Author
Beckman, Karen
Publisher
University of Kansas
Format
93 pages
Type
Thesis
Degree Level
M.S.
Discipline
Medicinal Chemistry
Rights
This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
Metadata
Show full item recordAbstract
This thesis describes the rationale, design, and syntheses of derivatives of isatin (1-H-indole-2,3-dione). Isatin was identified, during a high throughput screen of 10,000 compounds, as a potential scaffold for microtubule-destabilizing agents. Additional screening of purchased isatin derivatives gave rise to four substitution patterns of interest, 7-arylisatins, 5-methyl-N¬-alkyl/aryl isatins, 5-chloro-N-alkyl/aryl isatins and 5,7-dichloro-N-alkylated isatins. Series of compounds with the substitutions of interest were synthesized to further probe the structure-activity relationship (SAR) of isatin. The SAR study showed that substitutions in the 5- and 7- positions of the aromatic ring combined with N-substitutions increased the disruption of microtubule assembly. The 7-phenylisatin and N-arylisatin derivatives were inactive in the biological assay. Several of the 5-chloro-N-alkylisatins and the 5,7-dichloro-N-alkylisatins were cytotoxic in both MCF-7 and NCI/ADR-RES cell lines. 5,7-Dichloro-N-(4-bromobenzyl)isatin was the most active compound against MCF-7 cells, IC50 = 2.1 µM. To date the most cytotoxic compound tested is 5-methyl-N-(1-propyl)isatin, with an IC50 value of 52 nM (microtubule assembly IC50 = 2.6 µM) in the drug resistant cancer cell line NCI/ADR-RES.
Collections
- Medicinal Chemistry Dissertations and Theses [80]
- Theses [3901]
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.