KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Engineering
    • Mechanical Engineering Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Engineering
    • Mechanical Engineering Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Lumbar-pelvic range and coordination during lifting tasks

    Thumbnail
    View/Open
    MaduriAndWilson.pdf (592.4Kb)
    Issue Date
    2008
    Author
    Maduri, Anupama
    Pearson, Bethany L.
    Wilson, Sara E.
    Publisher
    Elsevier
    Type
    Article
    Metadata
    Show full item record
    Abstract
    Spine motion has been described to have two regions, a neutral zone where lumbar rotation can occur with little resistance and an elastic zone where structures such as ligaments, facet joints and intervertebral disks resist rotation. In vivo, the passive musculature can contribute to further limiting the functional neutral range of lumbar motion. Movement out of this functional neutral range could potentially put greater loads on these structures. In this study, the range of lumbar curvature rotation was examined in twelve healthy, untrained volunteers at four torso inclination angles. The lumbar curvature during straight-leg lifting tasks was then defined as a percentage of this range of possible lumbar curvatures. Subjects were found to remain neutrally oriented during the flexion phase of a lifting task. During the extension phase of the lifting task, however, subjects were found to assume a more kyphotic posture, approaching the edge of the functional range of motion. This was found to be most pronounced for heavy lifting tasks. By allowing the lumbar curvature to go in a highly kyphotic posture, subjects may be taking advantage of stretch-shortening behavior in extensor musculature and associated tendons to reduce the energy required to raise the torso. Such a kyphotic posture during extension, however, may put excessive loading on the elastic structures of the spine and torso musculature increasing the risk of injury.
    URI
    http://hdl.handle.net/1808/4305
    ISSN
    1050-6411
    Collections
    • Bioengineering Program Scholarly Works [144]
    • Mechanical Engineering Scholarly Works [135]
    Citation
    J Electromyogr Kinesiol. 2008 Oct;18(5):807-14

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps