KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Osteochondral Tissue Engineering for the TMJ Condyle Using a Novel Gradient Scaffold

    Thumbnail
    View/Open
    umi-ku-2752_1.pdf (4.871Mb)
    Issue Date
    2008-10-22
    Author
    Singh, Milind
    Publisher
    University of Kansas
    Format
    255 pages
    Type
    Dissertation
    Degree Level
    PH.D.
    Discipline
    Chemical & Petroleum Engineering
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    The articulation of the temporomandibular joint (TMJ), or the jaw joint, is one of the most complex and least studied joints of the musculoskeletal system. Painful disorders of the TMJ, known as temporomandibular disorders (TMDs), have considerable prevalence with over 10 million patients in the United States alone, which may severely interfere with everyday activities like chewing, yawning, talking, and laughing. Within the TMJ, the inferior joint space, which includes the mandibular condyle, typically sustains the greatest damage in TMDs. The objective of this thesis was to characterize the condylar cartilage biomechanics, and to explore novel routes to fabricate integrated gradient-based osteochondral constructs. Pioneering efforts were made toward understanding structure-function correlations for the condylar cartilage. A greater stiffness of the condylar cartilage in the anteroposterior direction than in the mediolateral direction under tension was observed, corresponding to the never before seen anteroposterior organization of collagen fibers. A positive correlation between the thickness and stiffness of the cartilage under compression suggested that their regional variations may be related phenomena caused in response to cartilage loading patterns. Beyond these vital biomechanical characterization efforts, novel microsphere-based gradient scaffolds were developed to address functional osteochondral tissue regeneration. Novel microsphere sintering routes, using ethanol as an anti-solvent or sub-critical CO2 for melting point depression, were established to construct microsphere-based scaffolds. A technique to create opposing macroscopic gradients of encapsulated growth factors using poly(D,L-lactide-co-glycolic acid) microspheres was developed, and in vitro studies with human umbilical cord stem cells provided promising results for osteochondral tissue regeneration. By encapsulating nanoparticles in the microspheres, a proof-of-concept was provided for creating functional scaffolds with a gradient in stiffness. This thesis lays down the foundation for a combined growth factor-stiffness gradient approach that could lead to a translational-level regenerative solution to osteochondral tissue regeneration with extended applications in other areas, including tissue engineering of heterogeneous/interfacial tissues.
    URI
    http://hdl.handle.net/1808/4286
    Collections
    • Dissertations [4475]
    • Engineering Dissertations and Theses [1055]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps