KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Engineering
    • Electrical Engineering and Computer Science Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Engineering
    • Electrical Engineering and Computer Science Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The usefulness of a machine learning approach to knowledge acquisition

    Thumbnail
    View/Open
    j30-slawa.pdf (41.31Kb)
    Issue Date
    1995-05
    Author
    Grzymala-Busse, Dobroslawa M.
    Grzymala-Busse, Jerzy W.
    Publisher
    BLACKWELL PUBLISHERS
    Format
    42309 bytes
    Type
    Article
    Metadata
    Show full item record
    Abstract
    This paper presents results of experiments showing how machine learning methods are useful for rule induction in the process of knowledge acquisition for expert systems. Four machine learning methods were used: ID3, ID3 with dropping conditions, and two options of the system LERS (Learning from Examples based on Rough Sets): LEM1 and LEM2. Two knowledge acquisition options of LERS were used as well. All six methods were used for rule induction from six real-life data sets. The main objective was to test how an expert system, supplied with these rule sets, performs without information on a few attributes. Thus an expert system attempts to classify examples with all missing values of some attributes. As a result of experiments, it is clear that all machine learning methods performed much worse than knowledge acquisition options of LERS. Thus, machine learning methods used for knowledge acquisition should be replaced by other methods of rule induction that will generate complete sets of rules. Knowledge acquisition options of LERS are examples of such appropriate ways of inducing rules for building knowledge bases.
    URI
    http://hdl.handle.net/1808/416
    DOI
    https://doi.org/10.1111/j.1467-8640.1995.tb00032.x
    Collections
    • Electrical Engineering and Computer Science Scholarly Works [306]
    Citation
    GRZYMALABUSSE, DM; GRZYMALABUSSE, JW. The usefulness of a machine learning approach to knowledge acquisition . COMPUTATIONAL INTELLIGENCE. May 1995. 11(2):268-279.

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps