KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dual-Band Multi-Channel Airborne Radar for Mapping the Internal and Basal Layers of Polar Ice Sheets

    Thumbnail
    View/Open
    umi-ku-2389_1.pdf (18.07Mb)
    Issue Date
    2008-03-06
    Author
    Marathe, Kiran Chidambara
    Publisher
    University of Kansas
    Format
    119 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Rapid thinning of the Jakobshavn and a few other outlet glaciers in Greenland and the Antarctic has been observed in the past few years. The key to understanding these dramatic changes is basal conditions. None of the spaceborne radars, that have been providing a wealth of information about the ice surface, is capable of measuring ice thickness or mapping bed conditions. At the Center for Remote Sensing of Ice Sheets (CReSIS), we have developed an airborne radar system to map the internal and basal layers to obtain a 3-dimensional representation of the ice sheets in Polar Regions. We have also devised advanced signal processing techniques to overcome the effects of surface clutter. We have developed a radar for measuring ice thickness up to a 5000 m depth from low-altitude (500 m) and high-altitude (7000 m) aircraft. This airborne radar system can operate at two bands: very high frequency band (VHF-band) (140 MHz to 160 MHz) with a peak power of 800 W and P-band (435 MHz to 465 MHz) with a peak power of 1.6 kW for collecting data to develop effective ice sheet models. The pulse signal has a duration of 3 us or 10 us. The radar has 1 transmitter and 6 receivers inside the aircraft and an 8 element dipole antenna array mounted beneath the wings of the aircraft. This system is designed to have 32 coherent integrations and pulse compression due to which a high loop sensitivity of at least 208 dB was obtained. This system was tested and data were collected in the recent September 2007 field experiment over various parts of Greenland. From the initial observations of the collected data it can be deduced that the signal losses at 450 MHz are more than predicted by existing models and clutter masked the weak bed echoes when the data were collected at higher altitudes both at 150 MHz and 450 MHz.
    URI
    http://hdl.handle.net/1808/4036
    Collections
    • Engineering Dissertations and Theses [1055]
    • Theses [3828]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps