KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Symbol Timing Recovery for SOQPSK

    Thumbnail
    View/Open
    umi-ku-2376_1.pdf (329.2Kb)
    Issue Date
    2008-02-04
    Author
    Chandran, Prashanth
    Publisher
    University of Kansas
    Format
    60 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    This item is protected by copyright and unless otherwise specified the copyright of this thesis/dissertation is held by the author.
    Metadata
    Show full item record
    Abstract
    Shaped offset quadrature phase shift keying (SOQPSK) is a highly bandwidth efficient modulation technique used widely in military and aeronautical telemetry standards. This work focuses on symbol timing recovery for SOQPSK. Continuous phase modulation (CPM) based detector models for SOQPSK have been developed only recently. The proposed timing recovery schemes make use of this recent CPM interpretation of SOQPSK, where SOQPSK is viewed as a CPM with a constrained (correlated) ternary data alphabet. One roadblock standing in the way of these detectors being adopted is that existing symbol timing recovery techniques for CPM are not always applicable since the data symbols are correlated. Here, we derive timing error detectors (TED) that are extended versions of existing non-data-aided (blind) and data-aided TED's for CPM, where the proposed extensions take the data correlation of SOQPSK explicitly into account. Further, for the nod-data-aided case, the merits of the modified TED are demonstrated by comparing its performance with and {\em without} taking the data correlation into account. A simple quantization scheme has also been discussed and implemented for the blind TED to yield an extremely low-complexity version of the system with only negligible performance losses. The S-curves of the proposed TED's are given, which rule out the existence of false lock points. Numerical performance results are given for the two versions of SOQPSK: MIL-STD SOQPSK and SOQPSK-TG. These results show that the proposed schemes have great promise in a wide range of applications due to their low complexity, strong performance and lack of false lock points; such applications include timing recovery in noncoherent detection schemes and false lock detectors.
    URI
    http://hdl.handle.net/1808/3967
    Collections
    • Engineering Dissertations and Theses [1055]
    • Theses [3828]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps