An SVD-like matrix decomposition and its applications

View/ Open
Issue Date
2003-07-15Author
Xu, Hongguo
Publisher
ELSEVIER SCIENCE INC
Format
237991 bytes
Type
Article
Metadata
Show full item recordAbstract
A matrix S is an element of C-2m x 2m is symplectic if S J S* = J, where J= [(0)(-Im) (Im)(0)]. Symplectic matrices play an important role in the analysis and numerical solution of matrix problems involving the indefinite inner product x*(iJ)y. In this paper we provide several matrix factorizations related to symplectic matrices. We introduce a singular value-like decomposition B = QDS(-1) for any real matrix B is an element of R-n x 2m, where Q is real orthogonal, S is real symplectic, and D is permuted diagonal. We show the relation between this decomposition and the canonical form of real skew-symmetric matrices and a class of Hamiltonian matrices. We also show that if S is symplectic it has the structured singular value decomposition S = UDV*, where U, V are unitary and symplectic, D = diag(Omega, Omega(-1)) and Omega is positive diagonal. We study the BJB(T) factorization of real skew-symmetric matrices. The BJB(T) factorization has the applications in solving the skew-symmetric systems of linear equations, and the eigenvalue problem for skew-symmetric/symmetric pencils. The BJB(T) factorization is not unique, and in numerical application one requires the factor B with small norm and condition number to improve the numerical stability. By employing the singular value-like decomposition and the singular value decomposition of symplectic matrices we give the general formula for B with minimal norm and condition number. (C) 2003 Elsevier Science Inc. All fights reserved.
Collections
Citation
Xu, HG. An SVD-like matrix decomposition and its applications. LINEAR ALGEBRA AND ITS APPLICATIONS. July 15 2003. 368:1-24.
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.