ATTENTION: The software behind KU ScholarWorks is being upgraded to a new version. Starting July 15th, users will not be able to log in to the system, add items, nor make any changes until the new version is in place at the end of July. Searching for articles and opening files will continue to work while the system is being updated. If you have any questions, please contact Marianne Reed at mreed@ku.edu .

Show simple item record

dc.contributor.advisorMandal, Satya
dc.contributor.authorMishra, Bibekananda
dc.date.accessioned2024-07-05T19:59:38Z
dc.date.available2024-07-05T19:59:38Z
dc.date.issued2021-12-31
dc.date.submitted2021
dc.identifier.otherhttp://dissertations.umi.com/ku:18022
dc.identifier.urihttps://hdl.handle.net/1808/35336
dc.description.abstractBased on the Homotopy theorem of Madhav V. Nori on smooth vector bundles and his Homotopy question on algebraic vector bundles \cite{M2}, we develop the theories of topological and algebraic obstructions as follows.\bE \item Let $M$ be a \textit{smooth manifold} of \textit{dimension} $d$ and ${\SV}$ be a \textit{smooth vector bundle} of \textit{rank} $n$ over $M$. We define an \textit{obstruction set} $\pi_0\left({\mathcal LO}({\SV})\right)$, to be called \textbf{Nori homotopy set}, and an \textit{obstruction class} $\varepsilon({\SV}) \in\pi_0\left({\mathcal LO}({\SV})\right) $. Then, if $2n\geq d+3$, we prove that $$ \varepsilon(\SV)=neutral \Llra {\SV}\cong {\SV}_1\oplus {\BR} $$ \item Let $A$ be an \textit{essentially smooth ring} of \textit{dimension} $d$ over an infinite \textit{perfect field} $k$, with $1/2\in k$, and $P$ be a \textit{projective $A$-module} with $rank(P)=n$. We define a similar \textit{obstruction set} as above $\pi_0\left({\mathcal LO}(P)\right)$, and an\textit{obstruction class} $\varepsilon(P) \in \pi_0\left({\mathcal LO}(P)\right)$. Then, if $2n\geq d+3$, we prove that $$ \varepsilon(P)=neutral \Llra P\cong Q\oplus A $$ \item Further, for \textit{real smooth affine schemes} $X=\spec{A}$, we reconcile these two theories, as follows. Let $M$ be the \textit{manifold of real points} in $X$. Let $P$ be a projective $A$-module, with $rank(P)=n$. Let ${\SV}_{Top}(P)$ be the smooth vector bundle over $M$ induced by $P$. Then, there is a natural map $$ \pi_0\left({\mathcal LO}(P)\right) \lra \pi_0\left({\mathcal LO}({\SV}_{Top}^{\star}(P))\right) $$ where ${\SV}_{Top}^{\star}(P)$ denote the dual bundle. \eE
dc.format.extent94 pages
dc.language.isoen
dc.publisherUniversity of Kansas
dc.rightsCopyright held by the author.
dc.subjectMathematics
dc.subject
dc.titleObstruction Theory in Algebra and Topology: A Homotopy Perspective
dc.typeDissertation
dc.contributor.cmtememberKatz, Daniel
dc.contributor.cmtememberBangere, Purnaprajna
dc.contributor.cmtememberWang, Yuanqi
dc.contributor.cmtememberSabarwal, Tarun
dc.thesis.degreeDisciplineMathematics
dc.thesis.degreeLevelPh.D.
dc.identifier.orcid


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record