Show simple item record

dc.contributor.authorBucini, Gabriela
dc.contributor.authorMerrill, Scott C.
dc.contributor.authorClark, Eric
dc.contributor.authorMoegenburg, Susan M.
dc.contributor.authorZia, Asim
dc.contributor.authorKoliba, Christopher
dc.contributor.authorWiltshire, Serge
dc.contributor.authorTrinity, Luke
dc.contributor.authorSmith, Julia M.
dc.date.accessioned2024-06-25T19:30:50Z
dc.date.available2024-06-25T19:30:50Z
dc.date.issued2019-06-24
dc.identifier.citationBucini G, Merrill SC, Clark E, Moegenburg SM, Zia A, Koliba CJ, Wiltshire S, Trinity L and Smith JM (2019) Risk Attitudes Affect Livestock Biosecurity Decisions With Ramifications for Disease Control in a Simulated Production System. Front. Vet. Sci. 6:196. doi: 10.3389/fvets.2019.00196en_US
dc.identifier.urihttps://hdl.handle.net/1808/35213
dc.description.abstractHog producers' operational decisions can be informed by an awareness of risks associated with emergent and endemic diseases. Outbreaks of porcine epidemic diarrhea virus (PEDv) have been re-occurring every year since the first onset in 2013 with substantial losses across the hog production supply chain. Interestingly, a decreasing trend in PEDv incidence is visible. We assert that changes in human behaviors may underlie this trend. Disease prevention using biosecurity practices is used to minimize risk of infection but its efficacy is conditional on human behavior and risk attitude. Standard epidemiological models bring important insights into disease dynamics but have limited predictive ability. Since research shows that human behavior plays a driving role in the disease spread process, the explicit inclusion of human behavior into models adds an important dimension to understanding disease spread. Here we analyze PEDv incidence emerging from an agent-based model (ABM) that uses both epidemiological dynamics and algorithms that incorporate heterogeneous human decisions. We investigate the effects of shifting fractions of hog producers between risk tolerant and risk averse positions. These shifts affect the dynamics describing willingness to increase biosecurity as a response to disease threats and, indirectly, change infection probabilities and the resultant intensity and impact of the disease outbreak. Our ABM generates empirically verifiable patterns of PEDv transmission. Scenario results show that relatively small shifts (10% of the producer agents) toward a risk averse position can lead to a significant decrease in total incidence. For significantly steeper decreases in disease incidence, the model's hog producer population needed at least 37.5% of risk averse. Our study provides insight into the link between risk attitude, decisions related to biosecurity, and consequent spread of disease within a livestock production system. We suggest that it is possible to create positive, lasting changes in animal health by nudging the population of livestock producers toward more risk averse behaviors. We make a case for integrating social and epidemiological aspects in disease spread models to test intervention strategies intended to improve biosecurity and animal health at the system scale.en_US
dc.publisherFrontiers Mediaen_US
dc.rightsCopyright © 2019 Bucini, Merrill, Clark, Moegenburg, Zia, Koliba, Wiltshire, Trinity and Smith. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.en_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.subjectAgent-based modelsen_US
dc.subjectDisease transmissionen_US
dc.subjectBiosecurityen_US
dc.subjectRisk attitudeen_US
dc.subjectHuman behavioren_US
dc.subjectPorcine epidemic diarrhea virus (PEDv)en_US
dc.subjectHog productionen_US
dc.titleRisk Attitudes Affect Livestock Biosecurity Decisions With Ramifications for Disease Control in a Simulated Production Systemen_US
dc.typeArticleen_US
kusw.kuauthorKoliba, Christopher
kusw.kudepartmentPublic Affairs and Administrationen_US
dc.identifier.doihttps://doi.org/10.3389/fvets.2019.00196en_US
kusw.oaversionScholarly/refereed, publisher versionen_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.rights.accessrightsopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright © 2019 Bucini, Merrill, Clark, Moegenburg, Zia, Koliba, Wiltshire, Trinity and Smith. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Except where otherwise noted, this item's license is described as: Copyright © 2019 Bucini, Merrill, Clark, Moegenburg, Zia, Koliba, Wiltshire, Trinity and Smith. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.