Unilaterally Induced Quadriceps Fatigue during Sustained Submaximal Isometric Exercise Does Not Alter Contralateral Leg Extensor Performance

View/ Open
Issue Date
2023-06-19Author
Benitez, Brian
Kwak, Minyoung
Succi, Pasquale J.
Weir, Joseph P.
Bergstrom, Haley C.
Publisher
MDPI
Type
Article
Article Version
Scholarly/refereed, publisher version
Rights
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Metadata
Show full item recordAbstract
This study investigated the effects of fatiguing unilateral exercise on the ipsilateral, exercised, and contralateral, non-exercised limb’s post-exercise performance in males and females. Ten males and ten females performed a fatiguing, unilateral isometric leg extension at 50% maximal voluntary isometric contraction (MVIC) force. Prior to and immediately after the fatiguing tasks, MVICs were performed for the exercised and non-exercised limb, with surface electromyographic (sEMG) and mechanomyography (sMMG) amplitude (AMP) and mean power frequency (MPF) recorded from each limb’s vastus lateralis. There were no fatigue-induced, sex-dependent, differences in time to task failure (p = 0.265) or ipsilateral performance fatigability (p = 0.437). However, there was a limb by time interaction (p < 0.001) which indicated decreases in MVIC force of the ipsilateral, exercised (p < 0.001), but not the contralateral, non-exercised limb (p = 0.962). There were no sex-dependent, fatigue-induced differences in neurophysiological outcomes between the limbs (p > 0.05), but there was a fatigue-induced difference in sEMG MPF (p = 0.005). To summarize, there were no differences in fatigability between males and females. Moreover, there was insufficient evidence to support the presence of a general crossover effect following submaximal unilateral isometric exercise. However, independent of sex, the neurophysiological outcomes suggested that competing inputs from the nervous system may influence the performance of both limbs following unilateral fatigue.
Collections
Citation
Benitez, B.; Kwak, M.; Succi, P.J.; Weir, J.P.; Bergstrom, H.C. Unilaterally Induced Quadriceps Fatigue during Sustained Submaximal Isometric Exercise Does Not Alter Contralateral Leg Extensor Performance. J. Funct. Morphol. Kinesiol. 2023, 8, 85. https://doi.org/10.3390/jfmk8020085
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.