KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Empirical Evaluation of Multi-Resource Scheduling for Moldable Workflows

    Thumbnail
    View/Open
    Kandaswamy_ku_0099M_18748_DATA_1.pdf (2.982Mb)
    Issue Date
    2022-12-31
    Author
    Kandaswamy, Sandhya
    Publisher
    University of Kansas
    Format
    46 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Resource scheduling plays a vital role in High-Performance Computing (HPC) systems. However, most scheduling research in HPC has focused on only a single type of resource (e.g., computing cores or I/O resources). With the advancement in hardware architectures and the increase in data-intensive HPC applications, there is a need to simultaneously embrace a diverse set of resources (e.g., computing cores, cache, memory, I/O, and network resources) in the design of run-time schedulers for improving the overall application performance. This thesis performs an empirical evaluation of a recently proposed multi-resource scheduling algorithm for minimizing the overall completion time (or makespan) of computational workflows comprised of moldable parallel jobs. Moldable parallel jobs allow the scheduler to select the resource allocations at launch time and thus can adapt to the available system resources (as compared to rigid jobs) while staying easy to design and implement (as compared to malleable jobs). The algorithm was proven to have a worst-case approximation ratio that grows linearly with the number of resource types for moldable workflows. In this thesis, a comprehensive set of simulations is conducted to empirically evaluate the performance of the algorithm using synthetic workflows generated by DAGGEN and moldable jobs that exhibit different speedup profiles. The results show that the algorithm fares better than the theoretical bound predicts, and it consistently outperforms two baseline heuristics under a variety of parameter settings, illustrating its robust practical performance.
    URI
    https://hdl.handle.net/1808/34435
    Collections
    • Theses [3901]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps