KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Object Detection and Classification based on Hierarchical Semantic Features and Deep Neural Networks

    Thumbnail
    View/Open
    Ma_ku_0099D_17991_DATA_1.pdf (9.481Mb)
    Issue Date
    2021-12-31
    Author
    Ma, Wenchi
    Publisher
    University of Kansas
    Format
    156 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    The abilities of feature learning, semantic understanding, cognitive reasoning, and model generalization are the consistent pursuit for current deep learning-based computer vision tasks. A variety of network structures and algorithms have been proposed to learn effective features, extract contextual and semantic information, deduct the relationships between objects and scenes, and achieve robust and generalized model.Nevertheless, these challenges are still not well addressed. One issue lies in the inefficient feature learning and propagation, static single-dimension semantic memorizing, leading to the difficulty of handling challenging situations, such as small objects, occlusion, illumination, etc. The other issue is the robustness and generalization, especially when the data source has diversified feature distribution. The study aims to explore classification and detection models based on hierarchical semantic features ("transverse semantic" and "longitudinal semantic"), network architectures, and regularization algorithm, so that the above issues could be improved or solved. (1) A detector model is proposed to make full use of "transverse semantic", the semantic information in space scene, which emphasizes on the effectiveness of deep features produced in high-level layers for better detection of small and occluded objects. (2) We also explore the anchor-based detector algorithm and propose the location-aware reasoning (LAAR), where both the location and classification confidences is considered for the bounding box quality criterion, so that the bestqualified boxes can be picked up in Non-Maximum Suppression (NMS). (3) A semantic clustering-based deduction learning is proposed, which explores the "longitudinal semantic", realizing the high-level clustering in the semantic space, enabling the model to deduce the relations among various classes so as better classification performance is expected. (4) We propose the near-orthogonality regularization by introducing an implicit self-regularization to push the mean and variance of filter angles in a network towards 90◦ and 0◦ simultaneously, revealing it helps stabilize the training process, speed up convergence and improve robustness. (5) Inspired by the research that self attention networks possess a strong inductive bias which leads to the loss of feature expression power, the transformer architecture with mitigatory attention mechanism is proposed and applied with the state-of-the-art detectors, verifying the superiority of detection enhancement.
    URI
    https://hdl.handle.net/1808/34305
    Collections
    • Dissertations [4626]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps