Localization of Multiple Jellyfish Toxins Shows Specificity for Functionally Distinct Polyps and Nematocyst Types in a Colonial Hydrozoan

View/ Open
Issue Date
2023-02-13Author
Klompen, Anna M. L.
Travert, Matthew K.
Cartwright, Paulyn
Publisher
MDPI
Type
Article
Article Version
Scholarly/refereed, publisher version
Rights
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Metadata
Show full item recordAbstract
Hydractinia symbiolongicarpus is a colonial hydrozoan that displays a division of labor through morphologically distinct and functionally specialized polyp types. As with all cnidarians, their venoms are housed in nematocysts, which are scattered across an individual. Here, we investigate the spatial distribution of a specific protein family, jellyfish toxins, in which multiple paralogs are differentially expressed across the functionally specialized polyps. Jellyfish toxins (JFTs) are known pore-forming toxins in the venoms of medically relevant species such as box jellyfish (class Cubozoa), but their role in other medusozoan venoms is less clear. Utilizing a publicly available single-cell dataset, we confirmed that four distinct H. symbiolongicarpus JFT paralogs are expressed in nematocyst-associated clusters, supporting these as true venom components in H. symbiolongicarpus. In situ hybridization and immunohistochemistry were used to localize the expression of these JFTs across the colony. These expression patterns, in conjunction with known nematocyst type distributions, suggest that two of these JFTs, HsymJFT1c-I and HsymJFT1c-II, are localized to specific types of nematocysts. We further interpret JFT expression patterns in the context of known regions of nematogenesis and differential rates of nematocyst turnover. Overall, we show that JFT expression patterns in H. symbiolongicarpus are consistent with the subfunctionalization of JFT paralogs across a partitioned venom system within the colony, such that each JFT is expressed within a specific set of functionally distinct polyp types and, in some cases, specific nematocyst types.
Collections
Citation
Klompen, A.M.L.; Travert, M.K.; Cartwright, P. Localization of Multiple Jellyfish Toxins Shows Specificity for Functionally Distinct Polyps and Nematocyst Types in a Colonial Hydrozoan. Toxins 2023, 15, 149. https://doi.org/10.3390/toxins15020149
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.