KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Institute for Policy & Social Research
    • FEWtures Project
    • View Item
    •   KU ScholarWorks
    • Institute for Policy & Social Research
    • FEWtures Project
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Towards sustainable agriculture: Fossil-free ammonia

    Thumbnail
    View/Open
    Screenshot of Website; file is not downloadable (125.2Kb)
    Issue Date
    2016-12-28
    Author
    Pfromm, Peter H.
    Publisher
    Journal of Renewable and Sustainable Energy
    Type
    Article
    Article Version
    Scholarly/refereed, publisher version
    Published Version
    https://aip.scitation.org/doi/abs/10.1063/1.4985090
    Metadata
    Show full item record
    Abstract
    About 40% of our food would not exist without synthetic ammonia (NH3) for fertilization. Yet, NH3 production is energy intensive. About 2% of the world's commercial energy is consumed as fossil fuels for NH3 synthesis based on the century-old Haber-Bosch (H.-B.) process. The state of the art and the opportunities for reducing the fossil energy footprint of industrial H.-B. NH3 synthesis are discussed. It is shown that even a hypothetical utterly revolutionary H.-B. catalyst could not significantly reduce the energy demand of H.-B. NH3 as this is governed by hydrogen production. Renewable energy-enabled, fossil-free NH3 synthesis is then evaluated based on the exceptional and continuing cost decline of renewable electricity. H.-B. syngas (H2, N2) is assumed to be produced by electrolysis and cryogenic air separation and then supplied to an existing H.-B. synthesis loop. Fossil-free NH3 could be produced for energy costs of about $232 per tonne NH3 without claiming any economic benefits for the avoidance of about 1.5 tonnes of CO2 released per tonne NH3 compared to the most efficient H.-B. implementations. Research into alternatives to the H.-B. process might be best targeted at emerging markets with currently little NH3 synthesis capacity but significant future population growth in markets such as Africa. Reduced capital intensity, good scale-down economics, tolerance for process upsets and contamination, and intermittent operability are some desirable characteristics of NH3 synthesis in less developed markets and for stranded resources. Processes that are fundamentally different from H.-B. may come to the fore under these specific boundary conditions.
    URI
    http://hdl.handle.net/1808/33682
    DOI
    https://doi.org/10.1063/1.4985090
    Collections
    • FEWtures Project [18]
    Citation
    Peter H. Pfromm. 2016. Towards sustainable agriculture: Fossil-free ammonia. Journal of Renewable and Sustainable Energy 9(3).

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps