Show simple item record

dc.contributor.authorMartin, Rene P.
dc.contributor.authorDias, Abigail S.
dc.contributor.authorSummers, Adam P.
dc.contributor.authorGerringer, Mackenzie E.
dc.date.accessioned2022-11-17T16:24:55Z
dc.date.available2022-11-17T16:24:55Z
dc.date.issued2022-10-16
dc.identifier.citationRene P Martin, Abigail S Dias, Adam P Summers, Mackenzie E Gerringer, Bone Density Variation in Rattails (Macrouridae, Gadiformes): Buoyancy, Depth, Body Size, and Feeding, Integrative Organismal Biology, Volume 4, Issue 1, 2022, obac044, https://doi.org/10.1093/iob/obac044en_US
dc.identifier.urihttp://hdl.handle.net/1808/33668
dc.descriptionA grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.
dc.description.abstractExtreme abiotic factors in deep-sea environments, such as near-freezing temperatures, low light, and high hydrostatic pressure, drive the evolution of adaptations that allow organisms to survive under these conditions. Pelagic and benthopelagic fishes that have invaded the deep sea face physiological challenges from increased compression of gasses at depth, which limits the use of gas cavities as a buoyancy aid. One adaptation observed in deep-sea fishes to increase buoyancy is a decrease of high-density tissues. In this study, we analyze mineralization of high-density skeletal tissue in rattails (family Macrouridae), a group of widespread benthopelagic fishes that occur from surface waters to greater than 7000 m depth. We test the hypothesis that rattail species decrease bone density with increasing habitat depth as an adaptation to maintaining buoyancy while living under high hydrostatic pressures. We performed micro-computed tomography (micro-CT) scans on 15 species and 20 specimens of rattails and included two standards of known hydroxyapatite concentration (phantoms) to approximate voxel brightness to bone density. Bone density was compared across four bones (eleventh vertebra, lower jaw, pelvic girdle, and first dorsal-fin pterygiophore). On average, the lower jaw was significantly denser than the other bones. We found no correlation between bone density and depth or between bone density and phylogenetic relationships. Instead, we observed that bone density increases with increasing specimen length within and between species. This study adds to the growing body of work that suggests bone density can increase with growth in fishes, and that bone density does not vary in a straightforward way with depth.en_US
dc.publisherOxford University Pressen_US
dc.rights© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License.en_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.titleBone Density Variation in Rattails (Macrouridae,Gadiformes): Buoyancy, Depth, Body Size, and Feedingen_US
dc.typeArticleen_US
kusw.kuauthorMartin, Rene P.
kusw.kudepartmentEcology and Evolutionary Biologyen_US
kusw.kudepartmentBiodiversity Instituteen_US
dc.identifier.doi10.1093/iob/obac044en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0153-7160en_US
kusw.oaversionScholarly/refereed, publisher versionen_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.rights.accessrightsopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License.
Except where otherwise noted, this item's license is described as: © The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License.