Evolution of Network Structure and Mechanical Properties in Autonomous-Strengthening Dental Adhesive

View/ Open
Issue Date
2020-09-12Author
Sarikaya, Rizacan
Song, Linyong
Ye, Qiang
Misra, Anil
Tamerler, Candan
Spencer, Paulette
Publisher
MDPI
Type
Article
Article Version
Scholarly/refereed, publisher version
Rights
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Metadata
Show full item recordAbstract
The inherent degradation property of most dental resins in the mouth leads to the long-term release of degradation by-products at the adhesive/tooth interface. The by-products increase the virulence of cariogenic bacteria, provoking a degradative positive-feedback loop that leads to physicochemical and mechanical failure. Photoinduced free-radical polymerization and sol‒gel reactions have been coupled to produce a novel autonomous-strengthening adhesive with enhanced hydrolytic stability. This paper investigates the effect of network structure on time-dependent mechanical properties in adhesives with and without autonomous strengthening. Stress relaxation was conducted under 0.2% strain for 8 h followed by 40 h recovery in water. The stress‒time relationship is analyzed by nonlinear least-squares data-fitting. The fitted Prony series predicts the sample’s history under monotonic loading. Results showed that the control failed after the first loading‒unloading‒recovery cycle with permanent deformation. While for the experimental sample, the displacement was almost completely recovered and the Young’s modulus increased significantly after the first test cycle. The experimental polymer exhibited higher degree of conversion, lower leachate, and time-dependent stiffening characteristics. The autonomous-strengthening reaction persists in the aqueous environment leading to a network with enhanced resistance to deformation. The results illustrate a rational approach for tuning the viscoelasticity of durable dental adhesives.
Collections
Citation
Sarikaya, R.; Song, L.; Ye, Q.; Misra, A.; Tamerler, C.; Spencer, P. Evolution of Network Structure and Mechanical Properties in Autonomous-Strengthening Dental Adhesive. Polymers 2020, 12, 2076. https://doi.org/10.3390/polym12092076
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.