Show simple item record

dc.contributor.authorCymerblit-Sabba, Adi
dc.contributor.authorSmith, Adam S.
dc.contributor.authorAvram, Sarah K. Williams
dc.contributor.authorStackmann, Michelle
dc.contributor.authorKorgan, Austin C.
dc.contributor.authorTickerhoof, Maria C.
dc.contributor.authorYoung, W. Scott
dc.date.accessioned2022-09-20T18:07:38Z
dc.date.available2022-09-20T18:07:38Z
dc.date.issued2020-04-23
dc.identifier.citationCymerblit-Sabba A, Smith AS, Williams Avram SK, Stackmann M, Korgan AC, Tickerhoof MC and Young WS (2020) Inducing Partner Preference in Mice by Chemogenetic Stimulation of CA2 Hippocampal Subfield. Front. Mol. Neurosci. 13:61. doi: 10.3389/fnmol.2020.00061en_US
dc.identifier.urihttp://hdl.handle.net/1808/33548
dc.description.abstractSocial recognition is fundamental for social decision making and the establishment of long-lasting affiliative behaviors in behaviorally complex social groups. It is a critical step in establishing a selective preference for a social partner or group member. C57BL/6J lab mice do not form monogamous relationships, and typically do not show prolonged social preferences for familiar mice. The CA2 hippocampal subfield plays a crucial role in social memory and optogenetic stimulation of inputs to the dorsal CA2 field during a short memory acquisition period can enhance and extend social memories in mice. Here, we show that partner preference in mice can be induced by chemogenetic selective stimulation of the monosynaptic projections from the hypothalamic paraventricular nucleus (PVN) to the CA2 during the cohabitation period. Specifically, male mice spend more time in social contact, grooming and huddling with the partner compared to a novel female. Preference was not induced by prolonging the cohabitation period and allowing more time for social interactions and males to sire pups with the familiar female. These results suggest that PVN-to-CA2 projections are part of an evolutionarily conserved neural circuitry underlying the formation of social preference and may promote behavioral changes with appropriate stimulation.en_US
dc.publisherFrontiers Mediaen_US
dc.rights© 2020 At least a portion of this work is authored by Adi Cymerblit-Sabba, Adam S. Smith, Sarah K. Williams Avram, Michelle Stackmann, Austin C. Korgan, and W. Scott Young on behalf of the U.S. Government and, as regards Dr. Cymerblit-Sabba, Dr. Smith, Dr. Williams Avram, Dr. Stackmann, Dr. Korgan, Dr. Scott Young and the U.S. Government, is not subject to copyright protection in the United States. Foreign and other copyrights may apply. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).en_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.subjectPartner preferenceen_US
dc.subjectPVNen_US
dc.subjectdCA2en_US
dc.subjectMiceen_US
dc.subjectChemogeneticen_US
dc.titleInducing Partner Preference in Mice by Chemogenetic Stimulation of CA2 Hippocampal Subfielden_US
dc.typeArticleen_US
kusw.kuauthorSmith, Adam S.
kusw.kuauthorTickerhoof, Maria C.
kusw.kudepartmentPharmacology and Toxicologyen_US
dc.identifier.doi10.3389/fnmol.2020.00061en_US
kusw.oaversionScholarly/refereed, publisher versionen_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.rights.accessrightsopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2020 At least a portion of this work is authored by Adi Cymerblit-Sabba, Adam S. Smith, Sarah K. Williams Avram, Michelle Stackmann, Austin C. Korgan, and W. Scott Young on behalf of the U.S. Government and, as regards Dr. Cymerblit-Sabba, Dr. Smith, Dr. Williams Avram, Dr. Stackmann, Dr. Korgan, Dr. Scott Young and the U.S. Government, is not subject to copyright protection in the United States. Foreign and other copyrights may apply. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).
Except where otherwise noted, this item's license is described as: © 2020 At least a portion of this work is authored by Adi Cymerblit-Sabba, Adam S. Smith, Sarah K. Williams Avram, Michelle Stackmann, Austin C. Korgan, and W. Scott Young on behalf of the U.S. Government and, as regards Dr. Cymerblit-Sabba, Dr. Smith, Dr. Williams Avram, Dr. Stackmann, Dr. Korgan, Dr. Scott Young and the U.S. Government, is not subject to copyright protection in the United States. Foreign and other copyrights may apply. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).