Show simple item record

dc.contributor.authorBuček, Aleš
dc.contributor.authorWang, Menglin
dc.contributor.authorŠobotník, Jan
dc.contributor.authorHellemans, Simon
dc.contributor.authorSillam-Dussès, David
dc.contributor.authorMizumoto, Nobuaki
dc.contributor.authorStiblík, Petr
dc.contributor.authorClitheroe, Crystal
dc.contributor.authorLu, Tomer
dc.contributor.authorGonzález Plaza, Juan José
dc.contributor.authorMohagan, Alma
dc.contributor.authorRafanomezantsoa, Jean-Jacques
dc.contributor.authorFisher, Brian
dc.contributor.authorEngel, Michael S.
dc.contributor.authorRoisin, Yves
dc.contributor.authorEvans, Theodore A.
dc.contributor.authorScheffrahn, Rudolf
dc.contributor.authorBourguignon, Thomas
dc.date.accessioned2022-07-08T20:03:22Z
dc.date.available2022-07-08T20:03:22Z
dc.date.issued2022-05-03
dc.identifier.citationBuček A, Wang M, Šobotník J, Hellemans S, Sillam-Dussès D, Mizumoto N, Stiblík P, Clitheroe C, Lu T, González Plaza JJ, Mohagan A, Rafanomezantsoa JJ, Fisher B, Engel MS, Roisin Y, Evans TA, Scheffrahn R, Bourguignon T. Molecular Phylogeny Reveals the Past Transoceanic Voyages of Drywood Termites (Isoptera, Kalotermitidae). Mol Biol Evol. 2022 May 3;39(5):msac093. doi: 10.1093/molbev/msac093. PMID: 35511685; PMCID: PMC9113494.en_US
dc.identifier.urihttp://hdl.handle.net/1808/32812
dc.description.abstractTermites are major decomposers in terrestrial ecosystems and the second most diverse lineage of social insects. The Kalotermitidae form the second-largest termite family and are distributed across tropical and subtropical ecosystems, where they typically live in small colonies confined to single wood items inhabited by individuals with no foraging abilities. How the Kalotermitidae have acquired their global distribution patterns remains unresolved. Similarly, it is unclear whether foraging is ancestral to Kalotermitidae or was secondarily acquired in a few species. These questions can be addressed in a phylogenetic framework. We inferred time-calibrated phylogenetic trees of Kalotermitidae using mitochondrial genomes of ∼120 species, about 27% of kalotermitid diversity, including representatives of 21 of the 23 kalotermitid genera. Our mitochondrial genome phylogenetic trees were corroborated by phylogenies inferred from nuclear ultraconserved elements derived from a subset of 28 species. We found that extant kalotermitids shared a common ancestor 84 Ma (75–93 Ma 95% highest posterior density), indicating that a few disjunctions among early-diverging kalotermitid lineages may predate Gondwana breakup. However, most of the ∼40 disjunctions among biogeographic realms were dated at <50 Ma, indicating that transoceanic dispersals, and more recently human-mediated dispersals, have been the major drivers of the global distribution of Kalotermitidae. Our phylogeny also revealed that the capacity to forage is often found in early-diverging kalotermitid lineages, implying the ancestors of Kalotermitidae were able to forage among multiple wood pieces. Our phylogenetic estimates provide a platform for critical taxonomic revision and future comparative analyses of Kalotermitidae.en_US
dc.publisherPublic Library of Scienceen_US
dc.rights© The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License.en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.subjectTime-calibrated phylogenetic treeen_US
dc.subjectHistorical biogeographyen_US
dc.subjectSocial evolutionen_US
dc.subjectLong distance dispersalen_US
dc.subjectInsectsen_US
dc.subjectMolecular clocken_US
dc.titleMolecular Phylogeny Reveals the Past Transoceanic Voyages of Drywood Termites (Isoptera, Kalotermitidae)en_US
dc.typeArticleen_US
kusw.kuauthorEngel, Michael S.
kusw.kudepartmentEcology & Evolutionary Biologyen_US
kusw.kudepartmentNatural History Museumen_US
dc.identifier.doi10.1093/molbev/msac093en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0001-9479-3141en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0003-2206-9503en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0002-8581-637Xen_US
dc.identifier.orcidhttps://orcid.org/ 0000-0003-1266-9134en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0001-5027-8703en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0002-6731-8684en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0001-6141-5603en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0001-9795-4377en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0001-9586-6197en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0002-4653-3270en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0003-3067-077Xen_US
dc.identifier.orcidhttps://orcid.org/ 0000-0001-6635-3552en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0002-0558-3036en_US
dc.identifier.orcidhttps://orcid.org/ 0000-0002-4035-8977en_US
kusw.oaversionScholarly/refereed, publisher versionen_US
kusw.oapolicyThis item meets KU Open Access policy criteria.en_US
dc.identifier.pmidPMC35511685en_US
dc.rights.accessrightsopenAccessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License.
Except where otherwise noted, this item's license is described as: © The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License.