KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Engineering
    • Civil, Environmental & Architectural Engineering Scholarly Works
    • View Item
    •   KU ScholarWorks
    • Engineering
    • Civil, Environmental & Architectural Engineering Scholarly Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Girder–Deck Interface: Partial Debonding, Deck Replacement, and Composite Action

    Thumbnail
    View/Open
    2019 Li, Lequesne, Matamoros.pdf (2.285Mb)
    Issue Date
    2019-01
    Author
    Li, Chaohui
    Lequesne, Rémy D.
    Matamoros, Adolfo
    Publisher
    American Society of Civil Engineers
    Type
    Article
    Article Version
    Scholarly/refereed, author accepted manuscript
    Rights
    © 2018 American Society of Civil Engineers.
    Metadata
    Show full item record
    Abstract
    Results are reported from tests of three precast, prestressed concrete girders under fatigue-type cyclic and monotonic loading conducted after deck removal and replacement. Although deck demolition altered the top surface of the girders, the girder–deck interfaces exhibited shear strengths greater than their nominal strength (based on the 2012 AASHTO LRFD Specification) after 2 × 106 cycles of loading to 45 and 30% of their nominal strength for troweled and roughened interfaces, respectively. A partially debonded detail was used for two of the girders to protect the girder top flange, which was wide and thin, during deck demolition. The roofing felt used to debond the girder–deck interface over the flanges reduced the effort required for deck removal by 65%, compared with the typical detail, eliminated chipping hammer–induced damage to the girder flanges, and still resulted in sustained composite action under 2 × 106 cycles of loading. The width of the bonded interface had little effect on girder stiffness and no observed effect on the width of deck effective in bending.
    URI
    http://hdl.handle.net/1808/32690
    DOI
    https://doi.org/10.1061/(ASCE)BE.1943-5592.0001311
    Collections
    • Civil, Environmental & Architectural Engineering Scholarly Works [121]
    Citation
    Li, C., Lequesne, R.D., Matamoros, A., (2019). Girder–Deck Interface: Partial Debonding, Deck Replacement, and Composite Action. Journal of Bridge Engineering, Volume 24 Issue 1

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    Login

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps