KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deterministic Scheduling of Real-Time Tasks on Heterogeneous Multicore Platforms

    Thumbnail
    View/Open
    Ali_ku_0099D_17539_DATA_1.pdf (2.316Mb)
    Issue Date
    2020-12-31
    Author
    Ali, Waqar
    Publisher
    University of Kansas
    Format
    143 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    In recent years, the problem of real-time scheduling has increasingly become more important as well as more complicated. The former is due to the proliferation of safety critical systems into our day-to-day life; such as autonomous vehicles, fueled by the recent advances in artificial intelligence. The latter is caused by the increasing demand for high performance which is driving the adoption of highly integrated complex heterogeneous system-on-chip (SoC) processors to deliver the performance while meeting strict size, weight, power (SWaP) and cost constraints. Motivated by these trends, this dissertation tackles the following main question: how can we guarantee predictable real-time execution on heterogeneous multicore SoCs while preserving high utilization? The fundamental problem in preserving the determinism of the real-time system realized on a heterogeneous multicore SoC is ensuring that the worst-case execution time (WCET) of each task, measured in isolation, will stay within a reasonable bound during the actual execution of the system. The primary challenge in achieving this goal---tightly bounding task WCETs---is that the execution time of a task can be highly non-deterministic, often varying significantly depending on which tasks are co-scheduled and how they contend on various shared hardware resources in the memory hierarchy. The particular scheduling requirements (e.g., non-preemption) of the different computing resources (e.g., integrated GPU) in the heterogeneous SoC and the possible cross-contention among their workloads can also exacerbate this problem. In light of these considerations, this dissertation presents new real-time scheduling techniques for predictable and efficient scheduling of mixed criticality workloads on heterogeneous SoCs. The contributions of this dissertation include the following: 1) A novel CPU-GPU scheduling framework that ensures predictable execution of critical GPU kernels on integrated CPU-GPU platforms. 2) A novel gang scheduling framework which guarantees deterministic execution of parallel real-time tasks on the multicore CPU cluster of a heterogeneous SoC. 3) Optimal and heuristic algorithms for gang formation that increase real-time schedulability under the RT-Gang framework and their extension to incorporate scheduling on accelerators in a heterogeneous SoC. 4) Concrete evaluation results using simulated tasksets as well as real-world workloads that demonstrate the analytical and practical benefits of the proposed techniques.
    URI
    http://hdl.handle.net/1808/32614
    Collections
    • Dissertations [4474]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps