KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Physiology-Based Approach for Detecting Vibration Perception Threshold in the Plantar Foot

    Thumbnail
    View/Open
    Whorley_ku_0099M_17364_DATA_1.pdf (1.794Mb)
    Issue Date
    2020-08-31
    Author
    Whorley, Brett
    Publisher
    University of Kansas
    Format
    76 pages
    Type
    Thesis
    Degree Level
    M.S.
    Discipline
    Bioengineering
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Stochastic-resonance-based vibration therapies have demonstrated the potential to improve balance in persons with somatosensory deficiencies to help prevent fall incidents. These vibrations must remain below vibration perception threshold (VPT) to be safe and effective. Several concerns exist regarding current approaches of detecting VPT, including inconsistent unit scales, limited knowledge of the physiological reliability of the methods, or potential effects they may have on standing balance. Recent assumptions that threshold detection tests have no impact on subsequent vibratory stimulations warrant further investigation. The purpose of this study was (a) to develop a new modified 4-2-1 VPT detection method (M421) based on existing approaches and underlying physiological principles, and (b) to identify potential effects the M421 may have on balance during or after threshold testing. To address the need for greater comparability between patient populations and across vibration systems, a common scale for expressing VPT was also established. Our results indicate that, among healthy adults, the M421 test does not significantly alter balance during or following threshold testing, and that a single trial conducted on both feet is comparable to separate tests of each foot. M421 demonstrates repeatable results and can be completed efficiently. Future studies will seek to further validate M421 through direct comparisons against existing methods to determine the optimal approach for detecting VPT prior to stochastic vibration interventions.
    URI
    http://hdl.handle.net/1808/32608
    Collections
    • Theses [3828]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps