KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of Fuzzy Hybrid Approaches to Project Delivery Method Selection in Highway Construction

    Thumbnail
    View/Open
    Nguyen_ku_0099D_17347_DATA_1.pdf (1.560Mb)
    Issue Date
    2020-08-31
    Author
    Nguyen, Phuong H.D.
    Publisher
    University of Kansas
    Format
    187 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Civil, Environmental & Architectural Engineering
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    Selection of project delivery methods is a success factor in delivering highway construction projects because it has a substantial impact on the project performance, such as cost, time, and quality. Project delivery decision-making processes have been heavily relied on experts’ opinions and subjective judgements of professionals to evaluate quantitative and qualitative decision variables. Although current quantitative and probabilistic methods provide a robust means to analyze quantitative variables, they are not ideally suited for treating uncertainties encountered in qualitative variables. Fuzzy set theory is a mathematical approach that can accommodate a combination of quantitative and qualitative variables. This dissertation aimed at investigating the applications of fuzzy set theory and fuzzy logic to support decision-making processes in project delivery method selections. Using an empirical dataset of 254 completed highway construction projects, three fuzzy-based applications, including fuzzy cluster analysis, fuzzy pattern recognition, and fuzzy Bayesian inference system were developed, trained, and tested. As a result, fuzzy cluster analysis was used to establish seven common project clusters that share high similarities in project characteristics, project complexity, delivery risks, cost growth, and project delivery methods. Fuzzy pattern recognition was used to develop a fuzzy rule-based inference system based on the seven identified project clusters to help recognize an appropriate project delivery method associated with potential cost growth for new highway projects. Fuzzy Bayesian networks were used to develop the theoretical framework of fuzzy Bayesian inference system which is able to depict the causal relationships between project characteristics, project complexity, delivery risks, and project delivery methods. The flexibility of fuzzy membership functions in the developed applications helps leverage the evaluation of a combination of quantitative and qualitative variables in highway project delivery method selection. In addition, these data-driven fuzzy applications also allow for multiple decision scenarios based on the decision maker’s judgements of delivery risks and project complexity. This dissertation contributes to the body of knowledge by demonstrating quantitative approaches derived from fuzzy set theory and fuzzy logic to support the selection of project delivery methods in highway construction. Additionally, the results from the developed fuzzy-based applications also provide insights regarding cost performance comparisons between project delivery methods. This study may assist highway agencies in making project delivery decisions based on project attributes, historical data and their relevant experience.
    URI
    http://hdl.handle.net/1808/32603
    Collections
    • Dissertations [0]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps