Development of Smartphone dual-laser waveguide based fluorescent microscopy system using 3D printing
Issue Date
2020-08-31Author
Bose, Rajarshi
Publisher
University of Kansas
Format
92 pages
Type
Thesis
Degree Level
M.S.
Discipline
Bioengineering
Rights
Copyright held by the author.
Metadata
Show full item recordAbstract
Nowadays cellphones are present everywhere, and along with the worldwide network of devices, the concept of mobile health monitoring is changing to reshape the biosensor market. The smartphone’s camera is a proven reliable candidate as a detector for the studies performed by various research groups. This study is a proof of concept of the Smartphone detection of two fluorescent dyes which can be used as biomarkers for point-of-care diagnostics through image processing techniques. A smartphone Xiaomi Redmi Note 4 along with two fluorescent dyes DyLight™ 405 NHS Ester and DyLight™ 633 NHS Ester are used in conjunction with two lasers Thorlabs 405 nm and 638nm. The captured pictures were analyzed using Image J. The limit of detection and dynamic range values were calculated for both dyes, 28.39 nM and 20-800 nM for DyLight™ 405 NHS Ester dye and 15.85 nM and 10-600 nM for DyLight™ 633 NHS Ester dye. Then this concept is realized by developing a cheap 3D printed POC device which uses the optical microscopy technology along with a PDMS chip. Hence, this integrated novel innovation which prioritizes accuracy and the ease of usage, can be a game changer for patients who live in countries of limited resources and can moreover aid to the impoverished people who are in dire need of medical help.
Collections
- Theses [3908]
Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.