KUKU

KU ScholarWorks

  • myKU
  • Email
  • Enroll & Pay
  • KU Directory
    • Login
    View Item 
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    •   KU ScholarWorks
    • Dissertations and Theses
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Towards the Understanding of Private Content – Content-based Privacy Assessment and Protection in Social Networks

    Thumbnail
    View/Open
    Wang_ku_0099D_17000_DATA_1.pdf (9.956Mb)
    Issue Date
    2020-05-31
    Author
    Wang, Qiaozhi
    Publisher
    University of Kansas
    Format
    135 pages
    Type
    Dissertation
    Degree Level
    Ph.D.
    Discipline
    Electrical Engineering & Computer Science
    Rights
    Copyright held by the author.
    Metadata
    Show full item record
    Abstract
    In the wake of the Facebook data breach scandal, users begin to realize how vulnerable their per-sonal data is and how blindly they trust the online social networks (OSNs) by giving them an inordinate amount of private data that touch on unlimited areas of their lives. In particular, stud-ies show that users sometimes reveal too much information or unintentionally release regretful messages, especially when they are careless, emotional, or unaware of privacy risks. Additionally, friends on social media platforms are also found to be adversarial and may leak one’s private in-formation. Threats from within users’ friend networks – insider threats by human or bots – may be more concerning because they are much less likely to be mitigated through existing solutions, e.g., the use of privacy settings. Therefore, we argue that the key component of privacy protection in social networks is protecting sensitive/private content, i.e. privacy as having the ability to control dissemination of information. A mechanism to automatically identify potentially sensitive/private posts and alert users before they are posted is urgently needed. In this dissertation, we propose a context-aware, text-based quantitative model for private in-formation assessment, namely PrivScore, which is expected to serve as the foundation of a privacy leakage alerting mechanism. We first explicitly research and study topics that might contain private content. Based on this knowledge, we solicit diverse opinions on the sensitiveness of private infor-mation from crowdsourcing workers, and examine the responses to discover a perceptual model behind the consensuses and disagreements. We then develop a computational scheme using deep neural networks to compute a context-free PrivScore (i.e., the “consensus” privacy score among average users). Finally, we integrate tweet histories, topic preferences and social contexts to gener-ate a personalized context-aware PrivScore. This privacy scoring mechanism could be employed to identify potentially-private messages and alert users to think again before posting them to OSNs. It could also benefit non-human users such as social media chatbots.
    URI
    http://hdl.handle.net/1808/32582
    Collections
    • Dissertations [4475]

    Items in KU ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.


    We want to hear from you! Please share your stories about how Open Access to this item benefits YOU.


    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    Browse

    All of KU ScholarWorksCommunities & CollectionsThis Collection

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Contact KU ScholarWorks
    785-864-8983
    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    785-864-8983

    KU Libraries
    1425 Jayhawk Blvd
    Lawrence, KS 66045
    Image Credits
     

     

    The University of Kansas
      Contact KU ScholarWorks
    Lawrence, KS | Maps
     
    • Academics
    • Admission
    • Alumni
    • Athletics
    • Campuses
    • Giving
    • Jobs

    The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

     Contact KU
    Lawrence, KS | Maps